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Development and evaluation of 
a Multiplexed Immunoassay for 
simultaneous Detection of serum 
IgG Antibodies to six Human 
Coronaviruses
suvang U. trivedi1, Congrong Miao2, Joseph e. sanchez2, Hayat Caidi2, Azaibi tamin2, 
Lia Haynes2 & Natalie J. thornburg  2

Known human coronaviruses (hCoV) usually cause mild to moderate upper-respiratory tract illnesses, 
except sARs-CoV and MeRs-CoV, which, in addition to mild illness can also be associated with severe 
respiratory diseases and high mortality rates. Well-characterized multiplexed serologic assays are 
needed to aid in rapid detection and surveillance of hCoVs. the present study describes development 
and evaluation of a multiplexed magnetic microsphere immunoassay (MMIA) to simultaneously detect 
immunoglobulin G (IgG) antibodies specific for recombinant nucleocapsid proteins (recN) from hCoVs 
229E, NL63, OC43, HKU1, SARS-CoV, and MERS-CoV. We used paired human sera to screen for IgG 
with reactivity against six hCoVs to determine assay sensitivity, specificity and reproducibility. We 
found no signal interference between monoplex and multiplex assay formats (R2 range = 0.87–0.97). 
Screening of paired human sera using MMIA, resulted in 92 of 106 (sensitivity: 86%) as positive and 68 of 
80 (specificity: 84%) as negative. This study serves as a proof of concept that it is feasible to develop and 
use a multiplexed microsphere immunoassay as a next generation screening tool for use in large scale 
seroprevalence studies of hCoVs.

Coronaviruses (CoVs) belong to Coronaviridae family in the order of Nidovirale1. They are single-stranded, 
positive-sense RNA viruses with an outer envelope and crown-like morphologies, formed by spike (S) attachment 
glycoproteins2. Based on phylogenetic analysis, all CoVs are classified into four genera, Alpha-, Beta-, Gamma-, 
or Deltacoronavirus3. Currently, there are six strains of human coronaviruses (hCoVs), known to cause mild 
to severe, upper and lower respiratory tract infections in humans2. From early 1960s to early 2000s, there were 
only two hCoVs known to cause infections in humans, 229E (Alphacoronavirus) and OC43 (Betacoronavirus)4. 
In 2003, an outbreak of severe acute respiratory syndrome (SARS)-CoV (Betacoronavirus), originating from 
Guangdong province in China, resulted in 8,096 reported cases and 774 deaths worldwide5. Following this out-
break, hCoV-NL63 (Alphacoronavirus) and hCoV-HKU1 (Betacoronavirus)6 were identified as sources of upper 
respiratory and gastrointestinal tract infections in hospitalized patients7. More recently, MERS-CoV (Middle East 
respiratory syndrome coronavirus) has been identified as the etiological agent for an ongoing epidemic of severe 
respiratory infection with high mortality rate in the Middle East5.

There are no vaccines or antivirals approved for the treatment or prevention of infections caused by SARS-CoV or 
MERS-CoV8. In the absence of virus-specific control measures, the key to controlling a reemergence of SARS-CoV 
and spread of MERS-CoV, is rapid detection and isolation of suspect cases. Large scale, population-based 
seroprevalence studies are very useful for identification of critical control points in disease outbreaks as they 
provide important data about susceptible populations and potential of future outbreaks through predictive 
modeling9. Use of purified or recombinant viral antigen based enzyme-linked immunosorbent assays (ELISAs) 
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coupled with molecular detection assays is an effective approach in population based surveillance studies10.  
We have developed and validated hCoV recombinant nucleocapsid protein (recN) indirect ELISAs that individu-
ally detect immunoglobulin G (IgG) antibodies to all six hCoVs.

The hCoV nucleocapsid (N) protein is abundantly expressed during infection and is, therefore, one of the ideal 
candidate antigens for the development of microtiter plate based ELISAs11. However, traditional plate ELISAs are 
limited to detecting IgG antibodies to a single hCoV recN antigen per well. In contrast, a magnetic bead-based 
multiplexed immunoassay (MMIA) would allow for the simultaneous detection of IgG antibodies to all six hCoV 
recN in a single test well, reducing sample consumption. In addition, multiplexing would allow higher sample 
throughput at lower reagent, labor, and material costs, without losing sensitivity and specificity of traditional 
ELISAs. The present work describes the development and validation of a MMIA to detect human serum IgG 
against six hCoV recN as a next generation screening tool in population-based seroprevalence studies.

Results
titration of Antigen Concentration. A monoplex assay for each hCoV recN conjugated bead set was 
developed and standardized to determine optimum antigen quantity per bead coupling reaction, optimum serum 
dilution and assay cut-off mean fluorescent intensity (MFI) values. Each bead set was conjugated with 1.0 µg, 
2.5 µg, or 5.0 µg of antigen per 100 µl of conjugation reaction (1.25 × 106 beads). A checkerboard titration assay 
was carried out for each antigen against a series of 2-fold (1:100–1:800) positive and negative control sera. The 
optimum working antigen amounts were determined to be 1.0 µg for SARS-CoV recN, His-BoNT, NL63 recN; 
2.5 µg for 229E recN, MERS-CoV recN, OC43 recN3; pET E. coli, and 5.0 µg for HKU1 recN per conjugation 
reaction (1.25 × 106 beads) (Fig. 1). Based on positive serum control titration results, optimum dilutions for each 
antigen were determined to be 1:400 for OC43, NL63, HKU1 and SARS-CoV; and 1:800 for 229E, and MERS-
CoV (Fig. 1). The optimum antigen quantities and positive control serum dilutions were selected based highest 
signal to background ratio, most reproducible results and economical usage of antigen stocks.

Correlation between monoplex and multiplex assay. We compared the MFI values generated by 
monoplex assays with multiplex assay for each antigen to investigate possible loss of sensitivity due to drop in 
MFI values. Positive control serum pools for each hCoV were serially diluted in 2-fold dilutions (1:100–1:51200) 
and screened using monoplex and multiplex microsphere immunoassays. In each assay format, 200 beads (100 
beads in duplicate) were counted for each recN conjugated bead set. Linear regression analysis was performed to 
determine correlation coefficient for each recN antigen. For all recN bead sets, statistically significant correlations 
were observed between the monoplex and multiplex formats with a correlation coefficient (R2) ranging from 0.88 
to 0.97 (Fig. 2).

Sensitivity, Specificity and cut-off MFI values. To determine the sensitivity, specificity and cut-off MFI 
values for each antigen, receiver operating characteristic (ROC) analysis was carried out based on screening of 
human sera collected from individuals whose respiratory specimens were tested by reverse real time polymerase 
chain reaction (rRT-PCR) for presence or absence of hCoV infections. Acute and convalescent phase sera from 
individuals tested positive for hCoVs 229E, NL63, OC43, and HKU1 infections as well as convalescent phase sera, 
from confirmed positive infections of MERS-CoV and SARS-CoV were screened using MMIA. Additionally, 
paired sera, from individuals tested negative for hCoV infection were also screened using MMIA. Percentage sen-
sitivity (%Se) and specificity (%Sp) for each recN was estimated over a wide range of cut-off MFI values and plot-
ted as Two Graph – Receiver Operating Characteristic curve (TG-ROC) using SPSS software (Data not shown). 
The MFI value at which the paired values of (%Se) and (%Sp) were optimal (intersection of %Se and %Sp graph 
lines) were selected as the cut-off MFI for respective recN antigen (data not shown). The cut-off MFI values of 
1333, 513, 228, 1171, 1333 and 520 were selected for 229E, NL63, OC43, HKU1, SARS-CoV and MERS-CoV 
recN monoplex assays, respectively. The corresponding sensitivity and specificity values are described in Table 1.

To determine the overall assay performance of MMIA, areas under curves (AUCs) were calculated for all six 
hCoV recN using RT-PCR as the reference diagnostic test (Fig. 3). The calculated AUC values for 229E, NL63, 
OC43, HKU1, SARS-CoV, and MERS-CoV recN, were 0.938, 0.869, 0.890, 0.906, 0.873 and 0.913, respectively 
(Fig. 3), indicating moderate to high level of test accuracy.

Reproducibility of Multiplex Microsphere Immunoassay. To assess the reproducibility of the MMIA, 
a panel of positive control serum samples for each hCoV was run in duplicate at optimum serum dilutions on 
two different plates on the same day and was repeated with a new batch of conjugated beads on a different day. 
Coefficients of variation (CV) for each replicate for each antigen was calculated and averaged (Table 2). All assays 
except NL63 recN gave CV values below 10% indicating MMIA precision.

Cross-reactivity between recN antigens. To examine cross reactivities between all hCoV recN in human 
sera, we screened each positive control of hCoV in a multiplex format at dilutions ranging 1:100–1:800. The 
results show overall minimum cross reactivity amongst hCoV recN (Fig. 4). However, positive controls of the 
hCoVs of the same antigenic groups showed cross reactivity with each other. Positive controls of group 1 (alpha) 
human coronaviruses, 229E and NL63, showed reactivity with each other but not with group 2 hCoVs. However, 
SARS-CoV (group 2b) positive control serum reacted with group 1 CoVs, 229E and NL63. Positive control serum 
for OC43, a group 2a (beta) coronavirus, reacted with HKU1 recN, another member of group 2a whereas positive 
control for MERS-CoV (group 2c) reacted with HKU1 recN.
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Discussion
Use of bead-based multiplexed immunoassay technology has been gaining recognition as a next generation 
screening tool in seroprevalence studies. Several research groups have reported the development of bead-based 
multiplexed immunoassays to detect antibodies against a variety of human viral pathogens. A duplex assay was 
developed to detect IgG against recombinant nucleocapsid proteins of human respiratory syncytial virus (hRSV) 
and human metapneumovirus (hMPV)10. A quadruplex assay was developed to detect IgGs against measles, 
mumps, rubella and varicella-zoster virus12. A thirteen-plexed immunoassay has been developed to detect IgM 
and IgGs for serodetection of arboviruses13. The results of the current study shows that it is feasible to use a 
multiplexed bead immunoassay to screen human sera for IgGs against the six human coronavirus recombinant 
nucleocapsid proteins.

The use of ROC analysis in our study not only facilitated selection of optimal MFI cut-off values, but also 
helped determine the accuracy and usefulness of our test method by calculating the area under the ROC curves14. 
A perfect test has an AUC of 1 and a useless test has an area of 0.5, the equivalent of a coin toss. Based on arbitrary 
criteria, the following guidelines have been suggested for interpretation of AUC values in context of test accuracy: 
low (0.5 < AUC ≤ 0.7), moderate (0.7 < AUC ≤ 0.9), and high (0.9 < AUC ≤ 1)15. Based on our assay test results, 
the calculated AUC ranged from 0.87 to 0.94, suggesting a high to high-moderate levels of accuracy and overall 
assay performance. The cross reactivity experiment results showed positive control of SARS-CoV reacting with 
group 1 hCoVs 229E and NL63 recN. A major limitation of these assays is that we are unable to distinguish the 
difference between cross reactivity and evidence of previous infections. SARS-CoV recN has been shown to react 

Figure 1. Titration of recombinant nucleocapsid (recN) proteins of hCoVs (A) 229E, (B) NL63, (C) OC43, 
(D) HKU1, (E) SARS-CoV and (F) MERS-CoV at concentrations of 1.0 µg (□), 2.5 µg (∆), and 5.0 µg (○) per 
conjugation reaction. Positive and negative controls for each hCoV were tested at dilutions 1:200, 1:400 and 
1:800. Mean Fluorescence Intensity (MFI) values of negative control antigens (pET E. coli and His-BoNT) were 
subtracted from the MFI values of corresponding positive control antigen for each antigen.
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with polyclonal antisera of group 1 coronaviruses in a western blot analysis16. However, this cross reactivity was 
one-way from SARS-CoV to other hCoV recN in this study which has also been previously confirmed by Che et al.,  
in a separate study17. The multiple sequence identity matrix of all hCoV nucleocapsid protein sequences show 
amino acid homology ranging from 20% to 63% (data not shown). In contrast, group 1 hCoVs showed only 20% 
to 22% sequence homology with group 2 hCoVs which explains the lack of detectable cross-reactivity between 

Figure 2. Correlation of Mean Fluorescence Intensity (MFI) values between monoplex and multiplex 
microsphere immunoassays using positive control serum for (A) 229E, (B) NL63, (C) OC43, (D) HKU1,  
(E) SARS-CoV and (F) MERS-CoV.

Cut-off 
MFI

%Sensitivity 
(Pos/Total)

%Specificity 
(Neg/Total)

229E recN 1333 100 (8/8) 88.75 (71/80)

NL63 recN 513 83.33 (15/18) 83.75 (67/80)

OC43 recN3 228 80.95 (34/42) 81.25 (65/80)

HKU1 recN 1171 89.28 (25/28) 86.25 (69/80)

MERS-CoV recN 1333 85.71 (6/7) 95.00 (76/80)

SARS-CoV recN 520 80.00 (4/5) 85.00 (68/80)

Table 1. Diagnostic sensitivity and specificity of all six hCoV recN in Luminex multiplex microsphere 
immunoassay in relation to cut-off MFIs, and %sensitivity and %specificity determined after ROC analysis of 
known positive and negative sera.
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these two antigenic groups. However, sequence homology was high between nucleocapsid sequences of OC43 
and HKU1 (%) and that of HKU1 and MERS-CoV (%). Higher percentage of nucleocapsid protein sequence 
homology may indicate the shared epitopes in the conserved and/or overlapping regions between hCoVs of 
the same antigenic groups. Since the previous hCoV infection history of patients enrolled in the study was una-
vailable, dual infection with OC43 and HKU1 could also have contributed to the cross-reactivity, though that is 
unlikely for HKU1 and MERS-CoV.

Our hCoV MMIA offers high throughput testing at reduced cost; the assay can be completed in less time with 
less labor using less clinical specimen and assay reagents. Moreover, MMIA allows the flexibility of mixing and 
matching the bead sets depending upon the analysis requirements. Overall, the results of our study showed that 
development of a bead-based multiplex immunoassay for screening human sera for IgG antibodies against hCoV 
recN proteins is feasible and may serve as an effective tool for large scale seroprevalence studies such as examining 
prevalence of hCoVs in young children of different ages.

Figure 3. Receiver Operating Characteristic curve (ROC) analysis to determine area under the curve (AUC) 
values for (A) 229E, (B) NL63, (C) OC43, (D) HKU1, (E) SARS-CoV and (F) MERS-CoV recN in MMIA using 
real-time RT-PCR as the reference diagnostic test.

Within plate 
%CV

Between plates 
%CV

Between assays 
%CV

(n = 24) (n = 48) (n = 94)

229E 2 2 6

NL63 5 12 23

HKU1 2 3 6

OC43 6 4 6

SARS-CoV 8 8 6

MERS-CoV 2 2 3

Table 2. Assay reproducibility of the Luminex multiplex microsphere immunoassay. %CV = percent coefficient 
of variation.
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Materials and Methods
Human serum samples. All methods were carried out in accordance with CDC’s institutional review board 
(IRB) guidelines and regulations. All protocols were approved by CDC’s IRB. All patients were hospitalized with 
pneumonia symptoms, gave informed consent, and their respiratory specimens were tested by rRT-PCR to deter-
mine etiology. Paired acute and convalescent phase human sera collected from individuals whose respiratory spec-
imens were tested positive for hCoV-229E (n = 4), hCoV-NL63 (N = 9), hCoV-OC43 (n = 21), and hCoV-HKU1 
(n = 14), by rRT-PCR, were included in a positive control panel for the study. Human sera from patients with 
confirmed SARS-CoV (n = 5) and MERS-CoV infections (n = 7), tested during outbreak investigation by our 
laboratory, were also included to the positive control panel. Acute sera were collected upon hospital admission, 
and convalescent phase sera were obtained 3–7 weeks later. From this panel of positive sera, convalescent phase 
sera exhibiting ≥ 4 fold increase in IgG titers, were pooled together to create a positive control for each hCoV 
recN. Similarly, acute and convalescent phase human sera, collected from individuals with acute respiratory illness 
whose respiratory specimens tested negative for all six hCoVs by real-time RT-PCR and exhibited no IgG reactivity 
when screened by in-house hCoV recN enzyme immunoassays, were included to create a negative control panel.

Expression and purification of recombinant nucleocapsid protein antigens. For this study, we chose 
to use recombinant coronavirus nucleocapsid (N) proteins. N antigens The full length SARS-CoV recN and a negative 
control antigen, the nontoxic 50-kDa C-terminal fragment of the botulinum neurotoxin serotype A (BoNt/HcA), 
were expressed and purified as described previously18. Expression and purification of full length hCoV-229E recN, 
hCoV-NL63 recN, hCoV-HKU1 recN, MERS-CoV recN and purified protein from E. coli containing pET-28 vector 
without the N gene, as a negative antigen control, were carried out as described previously for hCoV-OC43 recN319. 
Briefly, RNAs of respective hCoV-229E, NL63, HKU1, and MERS-CoV nucleocapsid (N) genes were amplified by 
RT-PCR using following primer pairs: 229E, forward, 5′-GGATCCCATATGGCTACAGTCAAATGGGCTG-3′  
and reverse, 5′-GGACTCGAGCTCTTAGTTTACTTCATCAATTATGTCAG-3′; NL63, forward, 5′-GGATC 
CCATATGGCTAGTGTAAATTGGGCCGATG-3′ and reverse, 5′-CTCGAATTCTTATTAATGCAAAACC 
TCGTTGAC-3′; HKU1 forward, 5′-CGGAATTCGATGTCTTATACTCCCGGT-3′ and reverse, 5′-TTTTCCTTT 
TGCGGCCGCTTAAGCAACAGAGTCTTCTA-3′; MERS-CoV forward, 5′-GGATCCCATATGGCATCCC 
CTGCTGCACCTCGTGCT-3′ and reverse, 5′-CTCGAATTCTTACTAATCAGTGTTAACATCAATCAT-3′. The 
amplified genes were cloned into a pET-28 vector encoding a C-terminal polyhistidine (His) 6 tag. Recombinant anti-
gens were expressed by IPTG induction in Escherichia coli strain BL21 (DE3) cells, and were purified by metal affinity 
chromatography (QIAGEN, Valencia, CA). Purified proteins were analyzed by SDS-PAGE and western blots.

eLIsA. The positive and negative control human sera panels were first tested by in-house hCoV recN ELISAs 
to determine titers of IgG antibodies against individual hCoV recN. All human sera were initially tested in dupli-
cate at 1:200 followed by titration at a 4-fold dilution range of 1:100 to 1:6400. In house indirect ELISAs for 
recN have been developed and standardized for screening of serum samples for IgG reactivity against hCoV-
229E recN, hCoV-NL63 recN, hCoV-HKU1 recN and MERS-CoV recN, using modified version of previously 
described indirect ELISAs for SARS-CoV recN and hCoV-OC43 recN3 (Haynes et al.,18; Blanchard et al.,19). 
Briefly, 96-well transparent flat bottom Immulon 2HB microtiter plates (Thermo Scientific, Rochester, NY) 
were coated with purified hCoV-229E recN (6.75 ng/well), hCoV-NL63 recN (5 ng/well), hCoV-OC43 recN3 
(25 ng/well), hCoV-HKU1 recN (40 ng/well), MERS-CoV recN (40 ng/well) or SARS-CoV recN (12.5 ng/well) 
and negative control antigens pET E. coli (5.0–40 ng/well) or His-BoNT (12.5 ng/well), diluted in sterile phos-
phate buffered saline (PBS, pH 7.4) and incubated overnight at 2–8 °C. The next day, plates were washed three 
times with 150 µl of PBS-T (PBS containing 0.05% Tween-20), and incubated with serum dilutions prepared 
in PBS-T-M (PBS containing 0.05% Tween-20 and 5% skim milk) for 1 h at 37 °C. Following incubations, the 
plates were washed three times in PBS-T and incubated with 1:4000 dilution of HRP-conjugated goat anti-human 
IgG (H + L, KPL, Gaithersburg, MD) prepared in PBS-T-M for 1 h at 37 °C. Following incubation, plates were 
washed three times with 150 µl of PBS-T, and incubated with ABTS® peroxidase substrate (2,2-azino-di-(3-et
hylbenzthiazoline-6-sulfonate)) (KPL, Gaithersburg, MD) at 37 °C for 30 min. The reaction was terminated by 
adding ABTS® peroxidase stop solution (5% sodium dodecyl sulfate) and the optical density (OD) measured at 
405/490 nm using a TECAN Infinity microplate reader (Mannedof, Switzerland). The OD values of the negative 

Figure 4. Cross reactivity of hCoV recN conjugated beads with Positive control serum samples for all six 
hCoVs in a multiplex microsphere immunoassay (MMIA) @ 1:400 dilution.
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control wells (n) were subtracted from and divided by the OD values of antigen-coated wells (p) and the average 
OD values of the antigen-coated wells were calculated as the difference (p-n) and ratio (p/n).

Conjugation of viral antigens to carboxylated magnetic beads. Purified His-tagged whole or trun-
cated recN of hCoV-229E, hCoV-NL63, hCoV-OC43, hCoV-HKU1, SARS-CoV, and MERS-CoV, along with 
pET E. coli and His-BoNT as negative antigen controls, were covalently conjugated to eight spectrally distinct 
MagPlex® pro-magnetic microsphere (bead) sets (Luminex® Corporation, Austin, TX), using the two step car-
bodiimide coupling protocol provided with Bio-Plex amine coupling kit (Bio-Rad Laboratories, Hercules, CA). 
All washing steps were performed using a magnetic separator (Luminex®). The beads were vortexed vigorously 
for 30 sec and sonicated for 15 sec in order to disperse the bead aggregates. For 1X scale conjugation reaction, 
1.25 × 106 of monodispersed beads from each bead set were washed in PBS (pH 7.4). The washed beads were 
activated by incubation in 100 μl of activation buffer (provided with the kit) containing freshly prepared 10 µl of 
50 mg/ml N-hydroxysulfosuccinimide sodium salt (sulfo-NHS) (Pierce, Rockford, IL, USA) and 10 μl of 50 mg/ml  
1-Ethyl-3-(3-dimethlyaminopropyl) carbodiimide hydrochloride (EDC) (Pierce) for 20 min at room temperature 
in the dark with continuous shaking. The activated beads were washed twice with PBS (pH 7.4). Coupling was 
performed by suspending the activated beads in 500 μl of PBS (pH 7.4) containing 1.0 µg, 2.5 µg, or 5.0 µg of hCoV 
recN or its corresponding negative control antigen and incubation for 2 h at room temperature in dark with con-
tinuous shaking. The covalently linked beads were washed once with 500 μl PBS (pH 7.4), resuspended in 250 µl 
StabiliGuard02 (SG02)® (Surmodics Inc., Minneapolis, MN), and incubated at 37 °C for 2 h in the dark with con-
tinuous shaking. Finally, the beads were magnetically separated and resuspended in 150 µl of SG02, enumerated 
using a hemocytometer and stored at 2–8 °C in the dark until use.

recN Monoplex Immunoassay. All recN conjugated bead sets, 229E recN #78), NL63 recN (#20), OC43 
recN3(#65), HKU1 recN(#44), MERS-CoV recN (#72,) SARS-CoV recN (#26), pET E. coli Neg ctrl (#12 and 
His-BoNT Neg ctrl (#12) were brought to room temperature prior to performing the monoplex immunoassay. 
Beads were vortexed for 30 sec and then sonicated in a water bath sonicator (Branson ultrasonic cleaner, VWR 
International, West Chester, PA) for 20 sec. Each bead set was diluted in PBS (pH 7.4) to a final concentration of 
100 beads/region/µl of PBS (pH7.4). A series of 2-fold dilutions (1:100–1:800) of positive and negative control sera 
were prepared in SurModics® Assay Diluent (cat#SM01–1000; SurModics, MN). In a black, 96 well, non-binding 
microtiter plate (Greiner Bio-One, Germany), 50 µl of diluted beads (100 beads/region/µl) and 50 µl of diluted 
control serum, were mixed using microtiter pipette. An additional 50 µl of PBS (pH 7.4) was added to each of the 
well of the plate. The plate was covered with aluminum foil and incubated for 2 h at room temperature with contin-
uous shaking at speed 7 on titer plate shaker (Lab-Line Instruments, USA). Following incubation, the beads were 
separated using magnetic plate separator (Luminex®) for 60 sec and washed twice with 150 µl PBS (pH 7.4) using 
multichannel pipette. The washed beads were resuspended in 50 µL of PBS (pH 7.4) plus 50 µL of R- Phycoerythrin 
(R-PE) conjugated goat anti-human IgG (H + L) F (ab′)2 (cat#109-116-088; JacksonImmuno, USA) antibody. The 
detection antibody was prepared by diluting R-PE to 1:120 (v/v) in PBS. The plate was covered with aluminum foil 
and incubated for 30 min at room temperature with continuous shaking at speed 7 on titer plate shaker (Lab-Line 
Instruments, USA). Beads were separated and washed twice with 100 µL of PBS (pH 7.4) and finally resuspended 
in 100 µL of PBS (pH 7.4). The plate was read on Luminex® MAGPIX® system. The Mean Fluorescence Intensity 
(MFI) values of negative control antigen conjugated beads were subtracted from MFI values of their correspond-
ing hCoV recN antigens. The results were expressed as MFI of 200 beads/region/well.

recN Multiplex Immunoassay. All recN conjugated beads were brought to room temperature prior to per-
forming the multiplex immunoassay. Beads were vortexed for 30 sec and then sonicated in a water bath sonicator 
(Branson ultrasonic cleaner, VWR International, West Chester, PA) for 20 sec. To prepare a working dilution, each 
bead set was diluted in PBS (pH 7.4) to a final concentration of 50 beads/region/µl of PBS (pH7.4). All diluted 
bead sets were then mixed into a single 15 ml polypropylene centrifuge tube in equal quantities. The 15 ml centri-
fuge tube was vortexed and sonicated as described above to create homogeneous mixture of all conjugated bead 
sets. All the test sera were diluted to an optimal dilution and tested in duplicate. To perform multiplexed bead 
immunoassay, 50 µl of homogeneous mixture of conjugated beads, 50 µl of diluted test serum sample and 50 µl of 
PBS (pH 7.4), were added to each of the well of the plate. The rest of the assay was carried out using the same steps 
as described above in the monoplex assay, except the results were expressed as MFI of 100 beads/region/well.

Assay Sensitivity and Specificity. A panel of positive paired sera and negative paired sera from individ-
uals with confirmed hCoV infection, was tested using multiplexed microsphere immunoassay (MMIA). Using 
rRT-PCR as the reference test, %sensitivity (%Se) and %specificity (%Sp) of the MMIA were calculated and plot-
ted as Two Graph Receiver Operating Characteristic (TG-ROC) analysis plots. The intersections, of %Se and %Sp 
plots, were selected as the cut-off MFI for each recN. The results were also plotted as ROC curve and the Area 
under the Curve (AUC) was calculated for each recN to determine overall assay performance.

Assay Reproducibility and correlation coefficient. A series of 2-fold dilutions (1:100–1:12800), of 
positive and negative controls of all six hCoVs, was prepared in SurModics® Assay Diluent (cat#SM01-1000; 
SurModics, MN) and tested using monoplex and multiplex immunoassay formats to determine correlation 
between two formats. The same panel was used in multiplex format for determining the cross-reactivity between 
hCoV recN beads as well as within and between assay variations. Each sample of the panel was run in triplicate on 
two different plates. The trial was repeated after seven days using another set of conjugated beads.
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statistical Analysis. IBM SPSS Statistics 21 software, was used to perform receiver-operating characteristic 
(ROC), area under the curve (AUC), and assay cut-off analysis. Linear regression analysis was performed using 
EXCEL (Microsoft® Office 2010) to determine correlation coefficients and coefficient of variance for each antigen.

Data Availability
Raw data will be made available upon request. Authors also agree to share reagents used in this manuscript.
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