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Abstract 
 
 
Background: We evaluated how non-pharmaceutical interventions could be used to control the 
COVID-19 pandemic and reduce the burden on the healthcare system. 
 
Methods: Using an age-structured compartmental model of COVID-19 transmission in the 
population of Ontario, Canada, we compared a base case with limited testing, isolation, and 
quarantine to scenarios with: enhanced case finding; restrictive social distancing measures; or a 
combination of enhanced case finding and less restrictive social distancing. Interventions were 
either implemented for fixed durations or dynamically cycled on and off, based on projected 
ICU bed occupancy. We present median and credible intervals (CrI) from 100 replicates per 
scenario using a two-year time horizon. 
 
Results: We estimated that 56% (95% CrI: 42-63%) of the Ontario population would be infected 
over the course of the epidemic in the base case. At the epidemic peak, we projected 107,000 
(95% CrI: 60,760-149,000) cases in hospital and 55,500 (95% CrI: 32,700-75,200) cases in ICU. For 
fixed duration scenarios, all interventions were projected to delay and reduce the height of the 
epidemic peak relative to the base case, with restrictive social distancing estimated to have the 
greatest effect. Longer duration interventions were more effective. Dynamic interventions were 
projected to reduce the proportion of the population infected at the end of the two-year period. 
Dynamic social distancing interventions could reduce the median number of cases in ICU below 
current estimates of Ontario’s ICU capacity. 
 
Interpretation: Without significant social distancing or a combination of moderate social 
distancing with enhanced case finding, we project that ICU resources would be overwhelmed. 
Dynamic social distancing could maintain health system capacity and also allow periodic 
psychological and economic respite for populations. 
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Background 

The COVID-19 pandemic represents a global public health emergency unparalleled in recent 

time. In the two months since the initial World Health Organization report describing the 

COVID-19 outbreak concentrated in Wuhan City, China (1), the number of confirmed cases has 

risen sharply from 282 to more than 330,0000, with 14,510 reported deaths across all regions of 

the globe (2). The first imported case of COVID-19 in Ontario, Canada was reported on January 

25, 2020 and community transmission was first documented on March 1, 2020 in British 

Columbia, Canada (3).  

 

This pathogen represents a significant challenge for public health, pandemic planning, and 

healthcare systems. The SARS-CoV-2 virus is highly transmissible (4-7). It causes moderate to 

severe clinical outcomes in approximately 20% of all recognized infected individuals (5, 8, 9). In 

the absence of a vaccine, public health responses have focused on the use of non-pharmaceutical 

interventions (NPIs) (10). These NPIs include: (1) “case-based” measures such as testing, contact 

tracing, isolation, and quarantine, and (2) “non-case-based” measures such as reducing the 

probability of transmission given an effective contact (e.g. hand hygiene, and cough etiquette), 

and social distancing measures to reduce the contact rate in the population. Social distancing 

minimizes opportunities for person-to-person transmission of the virus to occur. These social 

distancing measures include some combination of school closure, teleworking, cancellation of 

group activities and events, and a general overall reduction in community contacts. While they 

are expected to be effective in reducing transmission of SARS-CoV-2, they are also associated 

with substantial economic costs and social disruption.  
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Epidemiological models can contribute important insight for public health decision-makers by 

allowing for the examination of a variety of “what-if” scenarios. The Canadian Pandemic 

Influenza Plan (CPIP) for the Health Sector (the backbone of which informs COVID-19 

pandemic preparedness and response) identifies two main objectives for responding to a 

pandemic: (1) to minimize serious morbidity and mortality, and (2) to minimize societal 

disruption (11). The overarching goal of pandemic response is to find a combination of NPIs 

that would minimize the number of cases requiring in-patient medical care (e.g. hospitalization 

and/or ICU admission), and deaths, while also minimizing the level of societal disruption. 

Societal disruption measures could include outcomes such as the overall duration of time that 

the intervention needs to be to achieve the associated reductions in morbidity and mortality. A 

challenge for pandemic response using NPIs is that, in a fully susceptible population, although 

NPIs may slow disease transmission while they are in place, once the intervention is lifted (or 

compliance with the intervention becomes low), the transmission of the pathogen rebounds 

rapidly (10, 12). In the case of COVID-19, it may not be possible to minimize morbidity and 

mortality, and societal and economic disruption at the same time.  

 

Given these considerations, we used a transmission dynamic model of COVID-19 to explore the 

potential impact of case-based, and non-case-based NPIs in the population of Ontario, Canada. 

Our analysis focusses on identifying strategies that keep the number of projected severe cases 

(hospitalizations, and ICU admissions) within a range that would not overwhelm the Ontario 

healthcare system, while also considering the amount of time these interventions would be in 

place.  
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Methods 

Model overview  

We developed an age-structured compartmental model that describes COVID-19 transmission 

in the province of Ontario, Canada. We used a modified ‘Susceptible-Exposed-Infectious-

Recovered’ framework that incorporated additional compartments to account for public health 

interventions, different severities of clinical symptoms, and hospitalization risk. An overview of 

the model compartments and movements between them is provided in Figure 1 and model 

equations and additional details are provided in the Technical Appendix. The model was run 

for a period of two years and we assumed that recovered individuals remain immune from re-

infection for the duration of the epidemic. Individuals remained infectious until they recovered 

or were hospitalized; we did not model transmission within healthcare settings. For simplicity, 

we assumed that all deaths occurred in cases requiring intensive care. We included cases in 

hospital and requiring intensive care to estimate health care requirements over the course of the 

epidemic. The model was constructed in R (13).  

 

Model parameters  

The model was stratified by 5-year age groups using 2019 population estimates (14). Contacts 

within and between age groups were based on the POLYMOD study (15), using contact data 

specific for the United Kingdom. The model was further stratified by health status to account 

for differential vulnerability to severe infection among those with underlying health conditions. 

We obtained comorbidity estimates by age from the Canadian Community Health Survey (16) 

for Ontario and included the following conditions: hypertension, heart disease, asthma, stroke, 

diabetes, and cancer. For younger age groups (<12 years) we used estimates from Moran et al. 

(17). 
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Parameters describing the natural history and clinical course of infection were derived from 

published studies (Table 1, full details in Technical Appendix). To capture variability in 

transmission, specifically the observation that the basic reproductive number (R0) is over-

dispersed, with some cases transmitting to many others (superspreader events), while many 

other cases transmit much less, we have added volatility to the transmission term (18). The 

model was initiated with 750 prevalent cases (based on 150 reported cases in Ontario on March 

19, 2020 and an assumed reporting rate of 20%), that were randomly distributed across the 

infectious compartments.  

 

Interventions 

Testing was assumed to move individuals with non-severe symptoms from the infectious to 

isolated compartments. Isolated cases were assumed to have reduced transmission compared to 

non-isolated cases. Social distancing measures were assumed to reduce the number of contacts 

per day across the entire population. Details of parameters that were varied under different 

interventions are included in Table 2. For the base case, we assumed that there was a degree of 

testing and isolation occurring and that a proportion of exposed cases were quarantined. We 

then added in additional control measures: (i) enhanced testing and contact tracing; (ii) 

restrictive social distancing measures; and (iii) a combination of enhanced testing and contract 

tracing, along with less restrictive social distancing than in (ii). We considered two approaches 

to implementing interventions: (i) fixed durations and (ii) a dynamic approach with 

interventions turned on and off based on the number of cases requiring ICU care in the 

population. We focused on ICU capacity, since this is expected to be most limited resource 

during the COVID-19 epidemic. Prior to emergence of COVID-19, Ontario had approximately 

1300 ICU beds with associated ventilators; but 90% were occupied by individuals with non-
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COVID-19 illness; in mid-March 2020, the Ontario government made 300 additional ventilator-

associated ICU beds available (for a total of 430 unoccupied beds). As such, we used 200 

COVID-19 cases in the ICU (across all of Ontario) as a threshold for turning the intervention on. 

This value was based on ~50% saturation of available beds combined with the recognition that 

there is a lag between cases acquiring infection and requiring intensive care, such that one 

would expect ICU needs to grow rapidly once initial COVID-19 cases present for care.  

 

Outputs  

Key model outputs included final epidemic attack rates (% of population infected at the end of 

the 2-year period), prevalence of hospitalizations and ICU use, and deaths. For comparison we 

show the maximum and current ICU capacity per 10,000 population relative to model 

projections. For the dynamic intervention scenarios, we also calculated the amount of time over 

the 2-year model period during which the intervention was implemented, as a measure of 

intervention intensity. We present model outputs as medians and credible intervals (CrI) from 

100 model replicates per intervention.  
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Results 

Base case 

In the model base case, with limited testing, isolation and quarantine, we estimated that 56% 

(95% CrI: 42-63%) of the Ontario population would be infected over the course of the epidemic. 

This would include cases of all severities. Attack rates were projected to be highest in those 

aged 5-14 years (77%, 95% CrI: 63-83%) and 15-49 years (63%, 95%CrI: 48-71). Lower attack rates 

were projected in individuals aged less than 5 years (50%, 95% CrI: 37-58%) and adults aged 50-

69 years (47%, 95% CrI: 34-55) and greater than 70 years (30%, 95% CrI: 21-36). An example of 

the outbreak trajectory across model simulations is presented in Figure 2. At the peak of the 

epidemic, in the absence of any resource constraints to provide care (i.e., assuming all cases 

requiring medical care receive it), we projected 107,000 (95% CrI: 60,760-149,000) cases in 

hospital and 55,500 (95% CrI: 32,700-75,200) cases in ICU. The high prevalence of cases in ICU 

reflects the mean length of ICU stay associated with COVID-19 infection in other countries.  

 

Fixed duration interventions 

All of the interventions considered were projected to delay the epidemic peak and reduce the 

number of cases requiring ICU care at the peak (Figure 3). The effectiveness of the interventions 

scaled with intervention duration. For all interventions, when the intervention duration was 6 

months or less, there was no appreciable difference on final attack rate. With 12 and 18 months 

of heightened response measures, the proportion of the population infected at the end of the 2-

year period was reduced and, in some simulations, the prevalence of cases requiring intensive 

care fell below Ontario’s current capacity for all or part of the time period. The largest effect was 

observed for the restrictive social distancing intervention. The combination intervention, with 

enhanced case detection and less aggressive social distancing was projected to substantially 
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reduce attack rates when implemented for 18 months, while enhanced case detection in the 

absence of social distancing measures had a more modest effect, on average. There was 

substantial variability in model projections, due to model stochasticity. 

 

Dynamic interventions 

We also explored dynamic interventions that were turned on and off in response to the current 

state of the epidemic. Dynamic interventions were projected to be effective for reducing the 

proportion of the population infected at the end of the two-year period, with potentially shorter 

durations of social distancing than the fixed duration approach (Figure 4). For example, when 

implemented dynamically, 13 months of social distancing, cycled on and off, reduced the mean 

overall attack rate to 2%. For the social distancing alone and combination intervention scenarios, 

we observed atypical epidemic curves, with the number of cases increasing and decreasing 

repeatedly over time. In these scenarios, the median number of cases in ICU was reduced below 

current estimates of Ontario’s ICU capacity.  
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Interpretation 

COVID-19 poses an extraordinary challenge to societies. While severe illness, particularly in 

older individuals, is frequent enough to overwhelm a society’s ICU capacity (19), mild 

unrecognized illness (particularly in younger individuals) contributes to spread (20), and 

epidemics may only be recognized when superspreader events occur (21), often in vulnerable 

settings like health care facilities (22). In contrast to SARS (23), the high frequency of mild cases 

means that strategies which focus on case identification and isolation alone are likely to fail (22). 

As such, population-level interventions, with their attendant economic costs, have been used to 

prevent health systems from collapsing (24). While events in China, Singapore, Hong Kong and 

elsewhere have demonstrated that COVID-19 epidemics can be contained (24-27), the seeding of 

epidemics in countries around the globe, many with weak health systems (28), means that 

reintroduction of COVID-19 will continue to occur for some time. As successful containment 

efforts maintain a large number of susceptible individuals in populations, vulnerability to 

repeated epidemics is likely to persist until a COVID-19 vaccine is developed and manufactured 

at scale; or until large fractions of the population are infected and either die or develop 

immunity (29). 

 

Control strategies for COVID-19 thus need to balance competing risks: the risks of mortality 

and health system collapse, on the one hand, against economic risks and attendant hardships 

(and health consequences) on the other. In this work, we evaluated plausible strategies for 

attenuating the COVID-19 epidemic in Ontario, Canada. We focussed on ICU resources for two 

reasons: first, because this component of most health systems represents a scarce resource prone 

to being saturated; and secondly because such saturation results in abrupt surges in case-

fatality, as individuals with acute respiratory distress syndrome will die quickly without the 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2020. .https://doi.org/10.1101/2020.03.24.20042705doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.24.20042705
http://creativecommons.org/licenses/by-nc/4.0/


 11

capacity for mechanical ventilation. In broad terms, we find that prolonged social distancing is 

the preferred strategy for maintaining ICU resources, but an extreme fixed duration of social 

distancing is required to prevent the epidemic from overwhelming ICU capacity. That said, 

social distancing, even without reducing overall outbreak size, has the added benefit of 

delaying the epidemic peak, which gains time that can be used to build health system capacity 

and identify therapies and vaccines. 

 

In contrast to fixed-duration social distancing, we find that dynamic social distancing, with 

interventions turned on and off as needed, based on ICU capacity crossing a given threshold, 

represents a more effective, and likely more palatable, control strategy. Social distancing can be 

relaxed, but this inevitably results in resurgent disease in the population, requiring 

reinstatement. Nonetheless, dynamic social distancing is projected to maintain ICU capacity, 

and dramatically reduces overall attack rates, while at the same time requiring less total social 

distancing time than would be required by a fixed duration strategy of comparable 

effectiveness. Furthermore, dynamic social distancing has the potential to allow populations, 

and the economy, to “come up for air” at intervals, which may make this strategy more 

sustainable. We also found that a combination approach, with less restrictive social distancing 

along with enhanced case isolation and quarantine, could have a similar effect in the dynamic 

scenario as more restrictive social distancing alone. It is plausible that, as testing capacity 

increases, a combination approach that is less reliant on social distancing, will strike the right 

balance between disease control and societal disruption (30).  

 

Like any model, ours has limitations. At the time of writing, limitations in testing capacity in 

Ontario, and lack of information on ICU occupancy by COVID-19 patients, makes it challenging 
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to know where exactly on the epidemic curve we currently find ourselves. Any model involves 

trade-offs between simplicity and realism, and in the current work we have not attempted to 

model social distancing measures in a highly realistic way, but rather generically as reductions 

in contact frequency. Our understanding of the natural history of SARS-CoV-2 infection 

continues to evolve and the precise role of pre-symptomatic and subclinical transmission is 

uncertain. Social distancing becomes a more important control measure in the face of 

incomplete case ascertainment due to asymptomatic or mildly symptomatic cases. The model 

does not include seasonality; it is possible that transmission will attenuate in the summer (31), 

resulting in a decline in cases that would be expected to resurge with the return of colder 

weather. All of these factors mean that the quantitative findings are subject to uncertainty. 

Nonetheless, the qualitative insights around the role of social distancing, the relatively long 

intervention durations required to bend the epidemic curve,  and the potential use of cyclic 

interventions can be used to policy-makers and decision makers, along with emerging empirical 

evidence from other countries, to consider the best approaches for epidemic control over the 

coming months. Lastly, we have not modeled the fact that that abrupt surges in death resulting 

from full ICUs would, result in lower demands for ICU beds. Our goal here is to inform policy 

so that such outcomes are avoided to the extent possible. 

In summary, we have modelled plausible contours of the COVID-19 epidemic in Ontario, 

Canada, with a focus on maintenance of ICU resources. In the absence of significant social 

distancing or a combination of moderate social distancing with enhanced case detection and 

isolation, we project that ICU resources would be quickly overwhelmed, a conclusion consistent 

with that in other modeling work (12), as well as current events in Italy and Spain. On a more 

positive note, we project that dynamic social distancing, that reacts to changes in ICU 
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occupancy, could maintain health system capacity and also allow periodic psychological and 

economic respite for populations. 
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Figure Legends and Tables 
 
Figure 1. COVID-19 transmission model structure. Exposed cases can be either 
quarantined or not; quarantined cases would represent those who were identified via 
contact tracing. Hospitalized cases are assumed to be no longer infectious to others due 
to recognition of infection and are included in the model to estimate healthcare 
requirements. The model is stratified by age group and presence/absence of 
comorbidities. 
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Figure 2. Projected COVID-19 epidemic trajectory for the base case model with minimal
intervention. Daily incident cases per 1000 population are presented. The line represents
the median value of 100 model simulations and the shaded area indicates the 95% 
credible interval.  
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Figure 3. Projected ICU bed requirements and attack rates for fixed duration 
interventions. (A) Prevalent cases requiring intensive care are shown for intervention 
durations of 1, 3, 6, 12, and 18 months. Maximum and current ICU capacity in Ontario 
are indicated by the dashed horizontal lines. Median values are presented. (B) Model-
projected percent of the population infected over the 2-year time period. Attack rates 
include all infections, regardless of severity. Note that the slight variability in epidemic 
size for the no additional intervention base case reflects model stochasticity across 
simulations.  
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Figure 4. Projected ICU bed requirements and attack rates for dynamic interventions. 
(A) Prevalent cases requiring intensive care are shown for the base case and three 
intervention scenarios. Interventions are turned on and off (returning to base case 
parameter values), depending on the number of COVID-19 cases in the ICU. Maximum 
and current ICU capacity in Ontario are indicated by the dashed horizontal lines. 
Median values are presented. (B) Zoomed view of prevalent ICU cases to show the 
dynamics for the enhanced social distancing and combination scenarios. (C) Model-
projected estimates of percent of the population infected over the 2-year time period. 
Attack rates include all incident infections, regardless of severity. Median and 95% CrI 
are shown. The amount of time the dynamic interventions are in place is shown on the 
x-axis. Points indicate the median duration and lines the 95% CrI for each scenario.  
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Table 1. Model parameters. 
Parameter Age 

group 
Health status Value Details Source 

Latent period 
(days) 

All All 2.5 Time from exposure to onset 
of infectiousness 

(32-34) 

Pre-symptomatic 
infectious period 
(days) 

All All 1 Duration of infectiousness 
before symptom onset 

(32-34) 

Infectious period 
(mild/moderate) 
(days) 

All All 6 Symptomatic infectious 
period for mild/moderate 
cases (in absence of isolation) 

(32-34) 

Infectious period 
(severe) (days) 

All All 6 Symptomatic infectious 
period for infectiousness for 
severe cases; assumed equal 
to time to hospitalization 

(32-34) 

Basic reproduction 
number 

All All 2.3  (6) 

Time in 
quarantine (days) 

All All 14 Duration of quarantine for 
exposed cases 

Current 
policy 

Relative risk of 
transmission for 
cases in isolation 

All All 0.1 Isolated cases are assumed to 
have reduced transmission 
relative to unrecognized cases 

Assumption 

Average length of 
stay in hospital for 
cases not 
requiring ICU care 
(days) 

All All 10  (35) 

Average length of 
stay in hospital 
pre-ICU 
admission (days) 

All All 3 For severe cases requiring 
ICU care 

(35) 

Average length of 
stay in ICU (days) 

All All 21 For severe cases requiring 
ICU care 

(36) 

Average length of 
stay in hospital 
post-ICU (days) 

All All 21 For severe cases requiring 
ICU care 

(36) 

Probability of 
severe infection  

   Severe infections requiring 
hospitalization 

(35) 

 <15 
years 

No 
comorbidities 

0.01  
 

 

 15-49 
years 

No 
comorbidities 

0.03   

 50-69 
years 

No 
comorbidities 

0.12   

 70+ 
years 

No 
comorbidities 

0.35   

 <15 
years 

Comorbidities 0.02   

 15-49 
years 

Comorbidities 0.06   
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 50-69 
years 

Comorbidities 0.25   

 70+ 
years 

Comorbidities 0.76   

Probability severe 
case requires 
admission to ICU 

All All 0.26  (35) 

Probability of 
death in cases 
admitted to ICU 

    (36) 

 <15 
years 

No 
comorbidities 

0   

 15-49 
years 

No 
comorbidities 

0.2   

 50-69 
years 

No 
comorbidities 

0.36   

 70+ 
years 

No 
comorbidities 

0.58   

 
 

<15 
years 

Comorbidities 0   

 
 

15-49 
years 

Comorbidities 0.53   

 50-69 
years 

Comorbidities 0.9   

 70+ 
years 

Comorbidities 1   
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Table 2. Model scenarios details.  
 

Parameter 
Age 
group 

Scenario 

Base 
case 

Enhanced 
case 

detection 
Social 

distancing 

Enhanced 
detection with 
limited social 

distancing 
Non-quarantined 
cases tested and 
isolated (%) 

     

 
<15 
years 

10 40 10 40 

 
15 – 49 
years 

40 60 40 60 

 ≥50 
years 

70 80 70 80 

Exposed cases in 
quarantine before 
infectious (%) 

All 10 30 10 30 

Reduction in 
contacts with social 
distancing (%) 

All 0 0 60 25 
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