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ABSTRACT
The Middle East respiratory syndrome coronavirus (MERS-CoV) has spread through 27 countries and infected more than
2,200 people since its first outbreak in Saudi Arabia in 2012. The high fatality rate (35.4%) of this novel coronavirus and its
persistent wide spread infectiousness in animal reservoirs have generated tremendous global public health concern.
However, no licensed therapeutic agents or vaccines against MERS-CoV are currently available and only a limited few
have entered clinical trials. Among all the potential targets of MERS-CoV, the spike glycoprotein (S) has been the most
well-studied due to its critical role in mediating viral entry and in inducing a protective antibody response in infected
individuals. The most notable studies include the recent discoveries of monoclonal antibodies and development of
candidate vaccines against the S glycoprotein. Structural characterization of MERS-CoV S protein bound with these
monoclonal antibodies has provided insights into the mechanisms of humoral immune responses against MERS-CoV
infection. The current review aims to highlight these developments and discuss possible hurdles and strategies to
translate these discoveries into ultimate medical interventions against MERS-CoV infection.
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1. Introduction

The rapid emergence and dissemination of infectious
diseases has taken a heavy toll on humans since the
beginning of the twenty-first century. One of the
most well-known examples was the outbreak of severe
acute respiratory syndrome (SARS) in the winter of
2002 and 2003, caused by a novel coronavirus
(SARS-CoV) [1,2]. In distinct contrast to the mild
human coronaviruses HCoV-229E [3], HCoV-OC43
[4], HCoV-NL63 [5], and HCoV-HKU1 [6], infection
with SARS-CoV frequently resulted in severe symp-
toms including fever, dry cough, shortness of breath
and pneumonia. Transmission of SARS-CoV was pri-
marily from person to person and most cases occurred

in health care settings lacking adequate infection con-
trol precautions [2]. The SARS outbreak had severe
consequences in 29 countries and regions, infecting
8096 people worldwide with a fatality rate of approxi-
mately 10% [7]. There are still no vaccines or thera-
peutics specific to SARS-CoV available 16 years after
the SARS outbreak. It is not hard to imagine how cat-
astrophic it would be if SARS-CoV were to hit the
human community again.

While SARS-CoV remains a mystery and a loose
cannon, another novel coronavirus emerged in Saudi
Arabia in 2012, later known as the Middle East respir-
atory syndrome coronavirus (MERS-CoV) [8]. The
fatality rate of MERS-CoV infection is approximately
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35.4%, and new cases as well as associated deaths con-
tinue to arise to date [9]. Despite that most cases have
been attributed to human-to-human transmission,
MERS-CoV does not appear to transmit efficiently
among humans unless there is close contact. The
exact source of MERS-CoV and its routes of trans-
mission to humans still remain uncertain. Dromedary
camels are believed to be the animal reservoir for
MERS-CoV because isolates from camels are almost
identical to those from human, and that many dom-
estic camels are seropositive for MERS-CoV (reviewed
in [10,11]). Furthermore, current evidence strongly
suggests that bats are the original source for MERS-
CoV, as many coronaviruses phylogenetically related
to MERS-CoV originate in bats, including BatCoV-
HKU4, BatCoV-HKU5 and other MERS-related coro-
naviruses [12–15]. The BatCoV-HKU4 was also shown
to be able to engage the cellular receptor of MERS-
CoV, adding evidence to the bat origin theory [16].
However, there has not yet been direct evidence for iso-
lating MERS-CoV from bats (reviewed in [10,11,17]).

Great efforts have been made to develop preventive
and therapeutic interventions against MERS-CoV
infection. In particular, monoclonal antibodies and
vaccines targeting the Spike glycoprotein are major
areas of focus due to its critical role in mediating
viral entry, and its potential in inducing protective anti-
body responses in infected individuals. So far, more
than twenty monoclonal antibodies with nanomolar
neutralizing activities have been reported and many
vaccine candidates are underway in preclinical and
clinical studies. In this review, we aim to capture the
current advances and discuss possible strategies to
translate these discoveries into an ultimate medical
intervention against MERS-CoV infection.

2. Structure and function of MERS-CoV spike
glycoprotein

MERS-CoV belongs to the genus betacoronavirus of
the coronaviridae family [18]. It is an enveloped,
single-stranded, positive-sense RNA virus with a heli-
cal capsid structure (Figure 1(A)). The genome of
MERS-CoV is around 30 kb (30,119nt) long and
encodes 4 structural proteins (Spike, Envelope, Mem-
brane, and Nucleocapsid) and 16 nonstructural pro-
teins (Figure 1(C)) [13]. Like other coronaviruses, the
MERS-CoV uses its spike (S) glycoprotein to interact
with cellular receptors and enter into the target cell
[19–22]. As a unique structural component of the vir-
ion membrane, the S glycoprotein assembles into tri-
mers and forms large protruding spikes on the
surface of the virion [20]. The S glycoprotein is a typi-
cal type I membrane glycoprotein consisting of a glob-
ular S1 domain at the N-terminal, followed by a
membrane-proximal S2 domain and a transmembrane
(TM) domain [21]. The S1 domain mediates viral

attachment and contains the RBD (receptor binding
domain), which determines the host range and cellular
tropism for MERS-CoV [23–25]. Similar to other cor-
onaviruses, the S2 domain of MERS-CoV, mediating
membrane fusion, contains the hydrophobic fusion
peptide (FP) at the N-terminus as well as two heptad
repeats designated as HR1 and HR2 (Figure 1(C))
[26]. Through co-purification with the MERS-CoV
S1 domain, Raj and colleagues identified that dipepti-
dyl peptidase 4 (DPP4, also known as CD26) functions
as a cellular receptor for MERS-CoV [27].

The MERS-CoV virion enters the host airway cells
in the respiratory tract through fusion with either the
plasma or endosomal membrane [19]. Binding
between RBD and the cell receptor triggers a cascade
of conformational changes that lead to the formation
of a pre-hairpin intermediate of S2, in which the hydro-
phobic HR1 is exposed and allows the fusion peptide to
insert into the target cell membrane. This transient S2
intermediate then refolds with HR2 into a stabilized
trimer of hairpins, also called six-helix bundle structure
(6-HB), which brings the target cell membrane into
close proximity of the viral envelope, resulting in the
completion of the fusion process and initiation of the
virus life cycle [21] (Figure 1(B)). Structure-based
design of various peptides able to block the formation
of 6-HB have demonstrated potent inhibition on
MERS-CoV replication and spike-mediated cell–cell
fusion, showing great promise for further development
into effective viral fusion inhibitors for treating MERS-
CoV infection [26,28–30]. Among them, the peptide
EK1 is effective to multiple human coronaviruses
apart fromMERS-CoV and therefore serves as a poten-
tial pan-coronavirus fusion inhibitor [30].

Recently, structural studies on the prefusion state
spike protein of MERS-CoV and SARS-CoV have
provided more insights into the spike-mediated mem-
brane fusion process [31–34]. The MERS-CoV spike
protein trimerizes and folds into a metastable prefu-
sion conformation on the virion surface, in which
three S1 domains fold into a steady trimer structure
and sit on top to stabilize the coiled S2 domains
(Figure 2(A–B)). We and others have identified that
the RBD of SARS-CoV and MERS-CoV can be
found either buried (‘down’ position) or exposed
(‘up’ position) in the spike trimer structure [31,33–
35]. The two conformational states of RBD may
have distinct roles during receptor binding and mem-
brane fusion: only the RBDs in ‘up’ position, but not
those in ‘down’ position, can bind to the cell receptor
DPP4 (Figure 2(C–D)). Great steric clash was
observed between DPP4 and neighboring spike proto-
mers when we mapped it to the RBD in ‘down’ pos-
ition (Figure 2(C–D)). Transformation of the RBD
from the buried to the exposed state is therefore a
prerequisite for receptor binding (Figure 2(G–H)).
On the other hand, this conformational change also
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seems to open up the stable cap structure sitting
above the S2 cores (Figure 2(E–F)). This may lead
to disassociation of S1 trimer and exposure of the
fusion apparatus, triggering the membrane fusion
process.

To gain a better understanding of MERS-CoV inter-
action with cellular receptors at atomic levels, we and
others have determined the crystal structure of
MERS-CoV RBD bound to the extracellular domain
of its cellular receptor dipeptidyl peptidase 4 (DPP4)
[23,24]. We showed that MERS-CoV RBD consists of
a core and a receptor binding subdomain. MERS-
CoV RBD and the related SARS-CoV RBD share a
high degree of structural similarity in their core subdo-
mains, but are notably divergent in the receptor bind-
ing subdomains [36]. The receptor binding subdomain
of MERS-CoV RBD directly interacts with blades 4 and
5 of DPP4 propeller instead of its intrinsic hydrolase
domain. The interface consists of a buried surface of

∼2550 Å2 involving 14 residues in receptor binding
subdomain interacting with 15 residues in DPP4. The
actual binding forces are mediated through two
major binding patches. Patch 1 represents 49% of bur-
ied surface and forms between the C-terminal end of
the long loop connecting the β6 and β7 strands and
blade 4 of DPP4. Patch 2 occupies 51% of buried sur-
face and forms a slightly concaved outer surface at
the far end of the MERS-CoV receptor binding subdo-
main and a linker containing a short helix between
blade 4 and blade 5 of DPP4. The concaved outer sur-
face is made by the short β6 strand, C-terminal parts of
β5 and β7 strands, N-terminal part of β8 strand and the
β5-β6 linking loop. It is hoped that better understand-
ing of the atomic details of the spike glycoprotein, as
well as the interface between MERS-CoV RBD and
DPP4 will provide the structural basis for rational
design and development of therapeutics and vaccines
against MERS-CoV infection.

Figure 1. General introduction to MERS-CoV: model structure, life cycle and genomic composition. (A) Cartoon model structure of
MERS-CoV. (B) Membrane fusion mechanism for MERS-CoV spike glycoprotein. Binding between RBD and the cell receptor (DPP4)
triggers the conformational change of S glycoprotein to form a pre-hairpin intermediate of S2, in which the hydrophobic HR1 is
exposed and the fusion peptide inserts into the target cell membrane. This transient S2 intermediate then refolds with HR2 into a
stabilized trimer of hairpins, also called six-helix bundle structure (6-HB), bringing the target cell membrane into close proximity
of the viral envelope and resulting in the completion of the fusion process. (C) Genomic composition of MERS-CoV. Each coloured
box (length in scale) represents one open reading frame in the genomic RNA. The schematic for spike glycoprotein was also
shown with labelled domain names and residue numbers. ORF (open reading frame), DPP4 (dipeptidyl peptidase 4), RBD (recep-
tor-binding domain), NTD (N-terminal domain), CTD (C-terminal domain), FP (fusion peptide), and HR1-2 (heptad repeats 1-2).
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3. Neutralizing monoclonal antibodies
against MERS-CoV infection

Neutralizing antibodies are a major component of pro-
tective immunity against viral infection in humans.
Polyclonal by nature, the antibody response in vivo
mobilizes a dynamic and complex mixture of mono-
clonal antibodies (mAbs) that work in concert to target
various antigenic domains on the viral envelope glyco-
protein. Identifying the neutralizing mAbs that consti-
tute the neutralizing activity of polyclonal response and
their recognized antigenic domains has therefore
become the first crucial step towards gaining a better
understanding of the protective antibody response,
developing clinical intervention methods, and design-
ing immunogens capable of eliciting neutralizing
antibodies.

Great achievements have been made in the isolation
of neutralizing mAbs in the past few years using var-
ious technology platforms (Figure 3). Up till now,
more than 20 mAbs, most of which are human or
humanized antibodies, have been described by scien-
tists from all over the world. These antibodies are listed
in chronological order of publication in Table 1,
together with their unique biochemical and antiviral
properties against MERS-CoV infection observed in
cell culture and experimental animal models.

It is apparent that the single chain fragment variable
(scFv) library approach allows rapid discovery of mAb,
without time constraints from immunizing experimen-
tal animals or approaching convalescent individuals of
MERS-CoV infection. The earliest mAbs reported in
2014 were identified through screening non-immune
human scFv libraries with the ectodomain of S glyco-
protein (mAb 3B11) [40] or soluble RBD from S glyco-
protein (MERS-4, MERS-27 and the m336 panel)
[37,42] as bait protein (Figure 3(A)). These antibodies
all demonstrated high neutralizing activities and there-
fore were widely used as reference antibodies in later
studies.

Antibodies have also been generated from immu-
nized animals (Figure 3(B)). Several groups have
reported mAbs isolated from either wild-type inbred
mice or transgenic mice expressing human antibody-
variable heavy chains and κ light chains. Mersmab-1
(known as hMS-1 after humanization) was isolated
from mice immunized subcutaneously with chimeric
S1-Fc [47,48]. The mAbs 2E6 and 4C2 (humanized
form 4C2 h) were isolated in mice immunized with
recombinant RBD produced in insect cells [55]. Fur-
thermore, two human-like mAbs, REGN3048 and
REGN3051, were directly cloned from transgenic
mice expressing human versions of the antibody after

Figure 2. Structural insights of the MERS-CoV spike glycoprotein. (A–B) Top and side view of the MERS-CoV spike trimer with all
RBD in ‘down’ position, shown as molecular surface (PDB ID: 5W9J). The three protomers are coloured green, lightblue, and red,
respectively. The labels are the same with those in Figure 1. (C) One of the three protomers in (B) is highlighted as cartoon rep-
resentation whereas the other two protomers are faded in white. The RBD in ‘down’ position is coloured in green. The non-RBD S1
region was coloured deep blue and the S2 region was coloured orange. (D) Superimposition of RBD-bound DPP4 (PDB ID: 4L72) into
the MERS-CoV spike trimer. Clashes were observed between DPP4 and the other two S1 regions in the trimer structure. (E–F) Top
and side view of the MERS-CoV spike trimer with one RBD in ‘up’ position and the other two in ‘down’ position, shown as molecular
surface (PDB ID: 5W9H). Same colour codes are used as in (A–B). (G) The protomer with RBD in ‘up’ position is highlighted as cartoon
representation, with RBD in green, non-RBD S1 region in deep blue, and S2 in orange. (H) Superimposition of the RBD-bound DPP4
into the MERS-CoV spike trimer, with DPP4 interacting with the ‘up’ RBD. No steric clash was observed.
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immunization with DNA encoding S glycoprotein and
purified recombinant S glycoprotein [51]. Both mAbs
have been tested in humanized mice models and in
non-human primates [51,52]. The authors indicated
that the advantages of their system not only lay in
the human component of their antibodies but also in
the quick speed associated with isolation and pro-
duction, since no humanization or optimization step
was required. Currently, REGN3048 and REGN3051
have entered phase I clinical trials.

Most of the mAbs reported so far target the RBD
region of S glycoprotein, but RBD does not seem to be
the only target for anti-MERS-CoV antibody responses.
Recently, a mAb targeting the S1 N-terminus domain
(NTD) region, which does not contain RBD, was iso-
lated from mice immunized with S glycoprotein [57].
This antibody, 5F9, was shown to successfully block
virus entry in cell culture models and the efficacy was
comparable to other mAbs in IC50. Further, the mAb
panel D12, F11, G2 and G4 were generated by priming

Figure 3. Development of monoclonal antibodies against MERS-CoV. (A) Monoclonal antibodies sorted from non-immunized
human scFv (single-chain fragment variable) libraries. MERS-4 and MERS-27 were isolated from a non-immunized human scFv
library displayed on yeast with MERS-CoV spike RBD as bait protein. Similarly, 3B11 and m336 were isolated from non-immunized
human scFv phage libraries with MERS-CoV S protein or RBD protein as bait protein, respectively. (B) Monoclonal antibodies sorted
from immunized animals. The antibodies 5F9, hMS-1 (Mersmab-1), D12, F11, G2, G4, 4C2h (4C2), REGN3048 and REGN3051 were
isolated from mice immunized with the indicated vaccines labelled in the colour-coded boxes, each representing a different immu-
nogen; the bait or target protein for antibody selection were also listed. The mice from which REGN3048 and REGN3051 were iso-
lated were given the pale blue colour to indicate that they express human immunoglobulin genes. NbMS10-Fc, JC57-11, JC57-13,
JC57-14, F1B-H1 and HCAb-83 were isolated from larger animal including llama, rhesus macaque and camels as indicated. The vac-
cines and selection criteria were also shown. NTD (N-terminal domain), Fc (fragment constant). (C) Monoclonal antibodies isolated
from human survivors recovered from MERS-CoV infection. MERS-GD27, MERS-GD33, LCA60, CDC-C2, CDC-C5, CDC-A2 and CDC-A10
were generated by culturing B cells sorted from the patient and screening for MERS-CoV-specific antibodies. MCA1 was produced
by constructing a phage library displaying scFv cloned from a convalescent patient.
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mice with DNA encoding the full-length S glycoprotein
and boosting them with S1 protein. Among them are
two mAbs that target the non-RBD S1 (mAb G2) and
S2 region (mAb G4), respectively [49]. These non-
RBD-binding antibodies potently neutralized pseudo-
and liveMERS-CoV in cell culture and were also protec-
tive in mouse models [49,50]. Together, the develop-
ment of these antibodies elucidates that RBD may not
be the single target for anti-viral antibody response.
More studies are needed to elaborate the detailed mech-
anisms for these antibodies.

Apart from the traditional approach of isolating
mAbs from immunized mice, several groups have
turned to larger animal models for antibody isolation.
One group immunized rhesus macaques with com-
bined DNA and protein vaccines and isolated a panel
of mAbs, including JC57-11, JC57-13, JC57-14, and
FIB-H1, targeting both RBD and non-RBD S1 region
of the S glycoprotein, all with potent neutralizing
activities [50]. Another group immunized llama with
recombinant RBD and screened the nanobody library
for high-affinity single heavy chain antibody

Table 1. Advancement in MERS-CoV monoclonal antibodies development.

Name Source ‡ Target

Potency and Binding †

Evaluation Platforms# Mechanism Ref

IC50
Pseudo
(μg/ml)

IC50 live
(μg/ml) Kd (nM)

MERS-4 Non-immune human
ScFv (yeast library)

RBD 0.053 0.48 0.98 (RBD) In vitro Group 3 [37–39]
MERS-27 RBD 9.21 1.92 71.2 (RBD) In vitro Group 1

3B11 Non-immune human
ScFv (phage library)

RBD 3.50 N.A. 0.057 (S1) NHP (Prophylactic) [40,41]

m336 Non-immune human
ScFv (phage library)

RBD 0.005 0.07 0.099 (RBD) hDPP4-Tg mice (Prophylactic &
post-exposure)
Rabbit (Prophylactic)
NHP (Post-exposure)

Group 2 [42–46]

hMS-1 Mice immunized with
S1-Fc (antibody
humanized)

RBD 0.089 3.34 0.045 (RBD) hDPP4-Tg mice (Post-
exposure)

[47,48]

D12

Mice immunized with
S-DNA & S1

RBD 0.013 N.A. 9.93 (RBD)
6.63 (S1)

In vitro Group 1 [49,50]

F11 RBD 0.008 N.A. 114 (RBD)
3.49 (S1)

In vitro

G2 S1 (non-RBD) 0.013 N.A. 1.69 (S1) hDPP4-Tg mice (Prophylactic)
G4 S2 0.133 N.A. 8.65 (S2) S2

REGN3048 Humanized mice
immunized with S-
DNA & S

RBD 0.009 0.026 0.048 (RBD) hDPP4-KI mice (Prophylactic &
post-exposure)
NHP (Prophylactic)

[51,52]
REGN3051 RBD 0.010 0.066 0.043 (RBD)

LCA60 Human Survivor RBD 0.010 0.150 0.12 (S) Ad5-hDPP4 mice (Prophylactic
& post-exposure)
NHP (Prophylactic)

[53,54]

4C2h Mice immunized with
RBD (antibody
humanized)

RBD 1.8 6.25 217 (RBD) Ad5-hDPP4 mice (Prophylactic
& post-exposure)

Group 1 [55]

MCA1 Human Survivor RBD N.A. 0.39 N.A. NHP (Prophylactic & post-
exposure)

Group 2 [56]

5F9 Mice immunized
with S

S1 (NTD) 0.24 0.2 5.42 (NTD) In vitro [57]

CDC2-C2
Human Survivor

RBD 0.0057 0.058 N.A. hDPP4-Tg mice (Prophylactic) Group 2 [50]
CDC2-A2 S1 (non-RBD) 0.2180 0.024 N.A. In vitro
CDC2-A10 S1 (non-RBD) 0.0268 0.032 N.A. In vitro
JC57-14

NHP immunized with
S-DNA & S1

RBD 0.0084 0.07 N.A. In vitro Group 1
JC57-13 S1 (non-RBD) 0.0085 <0.0032 N.A. In vitro
FIB-H1 S1 (non-RBD) 0.0083 N.A. N.A. In vitro

MERS-GD27 Human Survivor RBD 0.0010 0.001 0.78 (S) hDPP4-Tg mice (Prophylactic &
post-exposure)

Group 2 [58,59]

MERS-GD33 RBD 0.0013 0.001 0.58 (S) In vitro

NbMS10-Fc Llama immunized with
RBD (nanobody
humanized)

RBD N.A. 2.33 0.35 (S1) hDPP4-Tg mice (Prophylactic &
post-exposure)

[60]

HCAb-83 Camel immunized with
MVA-S (nanobody
humanized)

RBD N.A. 0.0014 0.103 (S) hDPP4-Tg mice (Prophylactic) [61]

‡ RBD, S, S1, and S1-Fc are all recombinant proteins. Modified Vaccinia Ankara (MVA).
† The representative mAbs are chosen if there are multiple antibodies in the same panel. These data are directly copied from original publications. Data listed
here are for full-length human IgG formats of the antibody, or the human Fc-conjugated format for the nanobodies. Target protein for binding affinity tests
are indicated in the parenthesis in the Kd column. Abbreviation: 50% inhibitory concentration (IC50), equilibrium disassociation constant (Kd), data not
available (N.A.).

# Abbreviations for evaluation platforms: human DPP4 transgenic (hDPP4-Tg) mice with global/epithelial hDPP4 expression, human DPP4 knock-in (hDPP4-
KI) mice with hDPP4 replacing mDPP4 in situ, mice transduced with human adenovirus 5 vector expressing hDPP4 (Ad5-hDPP4 mice), and non-human
primates (NHPs).
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(nanobody) against RBD. The humanized form
NbMS10-Fc was constructed by combining the variable
domain of the nanobody with the human constant Fc
domain, and it was shown to protect mice from lethal
MERS-CoV challenge [60]. Similarly, Stalin et al iso-
lated a nanobody targeting RBD from camels immu-
nized with MVA encoding S glycoprotein. The
humanized form HCAb-83 has high binding affinity
to S protein and potent neutralizing activities to live
virus [61]. These nanobody-derived mAbs are smaller
in molecular weight and more stable than traditional
antibodies, and may provide a new option for future
antibody isolation.

In terms of closeness to authentic human antibodies,
no approach can compete with those based on direct B
cell cloning from convalescent individuals. One such
mAb LCA60 was isolated from memory B cells of
human survivors of MERS-CoV infection and was
among the most potent mAbs reported in neutralizing
pseudo- and live viruses [53]. More mAbs isolated
from human survivors were described as more conva-
lescent blood samples became available, including
MCA1 [56], CDC-C2, CDC-C5, CDC-A2, CDC-A10
[50], MERS-GD27, and MERS-GD33 [58,59] (Figure
3(C)), all with potent neutralizing activities against
MERS-CoV. The mAbs LCA60, CDC-C2, MCA1,
and MERS-GD27 were also tested to be protective in
animal models.

As MERS-CoV research progressed quickly in the
past few years, many mAbs have been tested for pro-
phylactic or therapeutic protection efficacy in human
DPP4 transgenic / transduced mice models, and a
few have entered large animal model trials such as in
rabbits or non-human primates (NHPs). However, as
different animal models were established among labs
worldwide with slightly different evaluation end points,
it is difficult to make a direct comparison among these
mAbs. This is also true for in vitro evaluation of neutra-
lizing activities – since different cell lines, pseudo-
viruses, and neutralizing assay techniques are utilized,
the published IC50 values can only serve as indirect
reference for comparison. Head to head comparison
in the same experimental system would be required
to identify the most protective mAb or combination
of mAbs against MERS-CoV infection in order to pro-
ceed to clinical trials.

4. Structure features of neutralizing mAbs
against MERS-CoV infection

We and others have carried out structural studies of
MERS-CoV neutralizing antibodies in complex with
MERS-RBD to understand neutralizing mechanism at
atomic levels (Figure 4). Based on the epitopes revealed
by structural studies, MERS-CoV antibodies targeting
RBD can be classified into three groups (Figure 4(B),
Table 1).

The first group consists of antibodies MERS-27,
D12, 4C2 and JC57-14, which interact with the C-
terminal segment of the β6-β7 loop and β7 strand of
RBD by both heavy and light chains (Figure 4(B))
[38,49,50,55]. Their common epitopes on the RBD
include residues Val527, Ser528, Ile529, Val530,
Pro531, Ser532, Trp535, Glu536 and Asp539 in the
β6-β7 loop. The residues Trp535, Glu536 and Asp539
also happen to be within the DPP4-binding site patch
1 of MERS-CoV RBD [23], mediating interaction
with Lys267 and the carbohydrate moiety linked to
Asn229 of DPP4 [38]. Therefore, the Group 1 anti-
bodies would directly compete with DPP4 in binding
to RBD by interfering with both protein–protein and
protein–carbohydrate interactions between RBD and
DPP4. Structural super-impositions also showed that
these four antibodies and DPP4 would have steric
clashes between the variable domain of the heavy
chain and the propeller domain of DPP4 if they simul-
taneously bind to RBD (Figure 4(C)).

The second group consists of antibodies m336,
MCA1, CDC2-C2 and MERS-GD27, which interact
with the β5-β8 strands, β5-β6 loop and β6-β7 loop in
RBD mainly by the heavy chain (Figure 4(B))
[43,50,56,58]. Their common epitope consists of Phe/
Leu506, Asp510, Trp535, Glu536, Asp539, Tyr540,
Tyr541, Arg542, and Trp553. Although antibodies in
both Group 1 and Group 2 share the binding residues
Trp535, Glu536 and Asp539, their approaching angles
to the RBD are significantly different. As shown in
Figure 4(C), the approaching angle of Group 2 anti-
bodies is closer to that of DPP4 by rotating approxi-
mately 90 degrees anti-clockwise from that of Group
1 antibodies, thereby generating more steric clashes
with DPP4. This is also evidenced by a larger overlap
between the common epitope of Group 2 antibodies
and DPP4-binding site on RBD [23]. As a representa-
tive of Group 2 antibodies, m336 exhibits very potent
neutralizing activity by not only mimicking critical
interactions between RBD and DPP4 but also
adopting an approaching angle similar to that of
DPP4 (Figure 4(C)).

The third group consists of antibody MERS-4 and
its variant MERS-4V2 with four residue replacements
in the HCDR3 (Figure 4(B)) [39]. By structural deter-
mination, it was shown that MERS-4 Fab and MERS-
4V2 scFv share the same mode of binding to the
RBD (Figure 4(B)) [39]. Analysis of the RBD/MERS-
4V2 complex structure showed that the antibody con-
tacts with the β5-β6, β6-β7 and β7-β8 loops of the
receptor-binding subdomain in RBD [39]. The epitope
involves Leu507, Ser508, Gln516, Asn519, Asn521,
Gln522, Tyr523, Pro525, Lys543, Leu545, and Gly550
[39]. To be note, the MERS-4 epitope has no overlap
with DPP4-binding site (Figure 4(C)). By approaching
the RBD outside the DPP4-binding site, MERS-4
recognizes a unique epitope different from all
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previously reported RBD-targeting antibodies. Com-
parisons of RBD in DPP4-bound and MERS-4-bound
states revealed that binding of MERS-4 induces or
fixes the β5-β6 loop into a conformation in which it
folds into a shallow groove on the RBD interface criti-
cal for accommodating a short helix of DPP4, thereby
indirectly disrupting the interaction between RBD and
DPP4 (Figure 4(C)). Such different epitope and mech-
anism enable MERS-4 to synergize with other anti-
bodies including RBD-targeting MERS-27 and m336
in neutralization, which provides valuable addition
for the combined use of antibodies against MERS-
CoV infection [39].

In addition to the aforementioned ten antibodies
targeting RBD, the near atomic resolution cryo-EM
structures of the trimeric MERS-CoV spike and its
complex with antibody G4 were also determined
(Figure 4(D)) [33]. G4 is the first reported S2-targeting
antibody and its epitope consists of a glycosylated, sol-
vent-exposed loop residing in a connector domain
between the HR1 and HR2 of the S2 subunit. In the
unbound spike trimer structure this loop is largely dis-
ordered, whereas it extends out from two β-strands and
is surrounded by all six CDRs (complementarity deter-
mining regions) of the mAb G4 upon antibody

recognition (Figure 4(E)). The specific spike-G4 inter-
action may stabilize the loop and further impede con-
formational changes of S2 subunit essential for
membrane fusion after DPP4 binding. The binding
epitope for G4 in S2 subunit is more conserved than
RBD among MERS-CoV isolates, shedding light on
G4 as a potential broad-spectrum neutralizing anti-
body for MERS-CoV. Yet this loop between HR1 and
HR2 is variable in sequence and length among different
viruses even in lineage C betacoronaviruses [33], limit-
ing its application to other coronaviruses. In terms of
pan-coronavirus medical countermeasures (MCMs),
the recently developed fusion inhibitor peptide EK1
is a potential candidate. The peptide EK1 was designed
to target the more conserved HR1 region of the S2
stem, and was shown to block cell–cell fusion induced
by spike protein from multiple human coronaviruses
[30].

In general, most reported MERS-CoV neutralizing
antibodies recognize the RBD in the S1 subunit, and
these antibodies are highly potent in neutralization.
These facts show that the RBD in the S1 subunit is a
major vulnerable site for antibody recognition and
neutralization. To be note, the RBD is also the region
where most naturally occurring mutations of the S

Figure 4. Advancement in structural studies of MERS-CoV neutralizing monoclonal antibodies. (A) Structure of MERS-CoV spike
trimer ectodomain (PDB ID: 5X5F). A single protomer of the trimeric spike protein with RBD in ‘up’ conformation is shown as mol-
ecular surface. The RBD, NTD and S2 subunit are coloured in green, paleyellow and lightblue, respectively. The two remaining pro-
tomers with RBD in ‘down’ conformation are shown in cartoon representation and coloured in wheat. (B) Structures of MERS-CoV
neutralizing antibodies targeting RBD. Antibodies are classified into three groups and shown as cartoon representation. The RBD is
coloured in green and antibodies in different colours. Group 1 includes MERS-27 (PDB ID: 4ZS6), D12 (PDB ID: 4ZPT), 4C2 (PDB ID:
5DO2) and JC57-14 (PDB ID: 6C6Y). Group 2 includes m336 (PDB ID: 4XAK), MCA1 (PDB ID: 5GMQ), CDC2-C2 (PDB ID: 6C6Z) and
MERS-GD27. Group 3 includes MERS-4 (PDB ID: 5ZXV) and MERS-4V2 (PDB ID: 5YY5). (C) Neutralizing mechanisms of MERS-CoV
neutralizing antibodies targeting RBD. The left panel shows the structural superimposition of the representative antibodies from
the three groups (MERS-27, m336 and MERS-4) and DPP4 (coloured in yellow) bound to RBD (coloured in green, PDB ID: 4L72)
at the same time. The right panel is enlarged view of steric clashes between the antibodies and the DPP4 and a significant con-
formational difference in the RBD β5-β6 loop between antibody-bound and DPP4-bound states. (D) Structure of G4 fab (coloured in
teal) in complex with spike trimer (PDB ID: 5W9H). (E) Side views of spike monomer bound to G4 fab. The enlarged view of the
glycosylated loop in the S2 subunit recognized by G4 is shown on the right.
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glycoprotein occur. Currently, the comprehensively
studied antibodies targeting the non-RBD region of
the spike glycoprotein also include mAb 5F9 targeting
the N-terminal domain (NTD) of the S1 subunit [57],
as well as mAbs G2, CDC2-A2, CDC2-A10, JC57-13
and FIB-H1 targeting the non-RBD region of the S1
subunit [33,50]. However, the detailed epitopes and
specific mechanisms are still unclear for these anti-
bodies. We expect that more antibodies with new neu-
tralizing epitopes and/or mechanisms would be
important for the combined use of antibodies against
MERS-CoV infection.

5. Advancement in MERS-CoV vaccine
development

Although monoclonal antibodies show promising anti-
viral effects in both cell culture and animal models
against MERS-CoV infection, their roles are still lim-
ited in large-scale disease prevention in MERS-CoV
high risk areas, as the therapeutic window is generally
narrow for mAbs and mass-scale production is time-
and resource-consuming. Vaccines still remain the
best choice for MERS-CoV prevention.

Given its critical role in mediating viral entry and as
major targets for neutralizing antibodies, S glyco-
protein and its RBD have become the prime targets
for MERS-CoV immunogen design and vaccine devel-
opment. Various approaches have been applied and
more than twenty vaccine candidates have been
reported in the past few years, including vaccines
based on inactivated virions [62,63], virus-like particles
[64], recombinant viral vectors [65–80], DNA
[49,81,82], recombinant protein subunits [33,49,83–
92], and nanoparticles [80,93,94]. Table 2 summarizes
the critical features of these approaches and their pro-
tective potentials in experimental animal models.

Up till now, only two vaccine candidates, GLS-5300
and MERS001, have entered human clinical trials. The
vaccine GLS-5300 was the first to be tested in healthy
human volunteers. It is a DNA plasmid encoding the
MERS-CoV S glycoprotein, requiring two-to-three
injections delivered by electroporation [81]. The
phase I clinical trial was started in 2016 at the Walter
Reed Army Institute, and another phase I/II clinical
trial is being conducted in Korea to test dosage safety
and immunogenicity. Another vaccine candidate,
MERS001, is a replication-deficient chimpanzee ade-
novirus (ChAdOx1) containing the MERS-CoV S gly-
coprotein antigen [70,71]. This vaccine only requires
one-time administration of 5×109–5×1010 virus par-
ticles via intramuscular route, and the local adverse
events as well as immunogenicity will be evaluated in
the phase I clinical trial conducted at the University
of Oxford. In addition, one more candidate vaccine
has been tested in dromedary camels either for poten-
tial human use or straight into veterinary use. It

explores a modified vaccinia virus Ankara (MVA) as
a vector to express MERS-CoV S glycoprotein [67].
The regimen involves immunization through intrana-
sal as well as intramuscular routes twice at a 4-week
interval. The vaccinated camels demonstrated a signifi-
cant reduction of excreted infectious virus and viral
RNA transcripts in vaccinated animals upon MERS-
CoV challenge. Protection against MERS-CoV infec-
tion correlated with the presence of serum neutralizing
antibodies to MERS-CoV. As MVA has established a
reasonably good safety profile in humans and induced
desirable protective immunity in camels, it represents
one of the potential candidates to be further evaluated
in humans in the near future.

The remaining vaccine candidates are all in the
stages of preclinical or laboratory development and
invariably target the S glycoprotein or RBD critical
for viral entry (Table 2). Vaccines based on inactivated
[62,63] or virus-like particles [64] have historical pre-
cedence in inducing protective immune responses in
humans. Whether the same strategies are applicable
to MERS-CoV requires further studies, particularly
when it comes to possible safety concerns [62].

Apart from MERS001 and the MVA-based vaccine
tested in dromedary camels, other vector-based
approaches are also being actively pursued, including
adenovirus [68,69,72,73,80], measles virus [74,75],
VEEV replicon particle [76,77], vesicular stomatitis
virus [78], and rabies virus [79]. All recombinant
viruses encoding the MERS-CoV S or S1 antigen
demonstrated strong immunogenicity in mice or
non-human primate models, and some were shown
to confer protection in MERS-CoV challenge mouse
models (Table 2). However, concerns remain regarding
the pre-existing immunity against these viral vectors
from natural infection, because it would diminish the
vaccine potency [95]. To overcome the issue of pre-
existing immunity against human adenoviruses while
preserving their advantages such as high yields and
strong immunogenicity, rare serotypes of chimpanzee
adenovirus of low human seroprevalence may be
adopted as viral vectors [70,73]. Our group recently
developed a vaccine candidate with replication-defec-
tive chimpanzee adenovirus C68 (AdC68) vector
expressing full length MERS-CoV S glycoprotein. Ser-
oprevalence of AdC68 is around 2% in human popu-
lation, much lower than that of the commonly used
human adenovirus 5 (HuAd5) vector (>60%) [96,97].
One intra-nasal administration of 2 × 109 viral particles
completely protected human DPP4 knock-in (hDPP4-
KI) mice from lethal MERS-CoV challenge, and passive
transfer of AdC68-S immune sera conferred survival
advantage in lethal challenge mouse models [73].
Further, the safety profiles of these vectors have yet
to be extensively tested in humans. Recently, Hashem
and colleagues showed that the adenovirus-based S1
vaccine may pose potential safety concerns because it
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Table 2. Advancement in MERS-CoV vaccine development.

Vaccine platform Composition §

Immunization strategy‡

Animal Model# Efficacy* RefSchedule Route Dosage

MERS-CoV Inactivated
EMC/2012 2 doses (3 weeks interval) i.m. 1×106 TCID50 Alum / MF59 hDPP4-Tg mice nAb↑ Viral Load ↓ [62]
EMC/2012 3 doses (4 weeks interval) i.m. 1 µg S (equivalent) Alum + CpG Ad5-hDPP4 mice nAb↑(against RBD) Viral Load ↓

Pathology ↓
[63]

Virus like particle Alum 4 doses (2 weeks interval) i.m. 250 μg VLPs
250 μg Alum

NHPs nAb↑ Cellular Immunity ↑ [64]

Viral Vector Based

MVA

S 2 doses (3 weeks interval) i.m./s.c. 1 × 108 PFU Ad5-hDPP4 mice nAb↑
Cellular Immunity ↑
Viral Load ↓ Pathology ↓

[65,66]

S 2 doses (4 weeks interval) i.n. i.m. 2×108 PFU (i.n.) + 1 × 108 PFU
(i.m.)

Dromedary Camel nAb↑(against S1)
Viral Load ↓ Pathology ↓

[67]

Adenovirus

Ad5-S/S1 2 doses (week 0 i.m.+ week 3 i.n.) i.m. i.n. 1×1011 vp BALB/c mice nAb ↑ (against S) [68]
Ad5-S 1 dose i.m./ i.g. 1×109 vp BALB/c mice nAb ↑ (against RBD)

Cellular Immunity ↑ (i.m.)
[69]

Ad41-S 5×109 vp
ChAdOx1-S 1 dose i.n./i.m. 1×108 IU hDPP4-Tg mice nAb↑

Cellular Immunity ↑
Viral Load ↓ Pathology ↓

[70,71]

Ad5-S1-CD40L 2 doses (4 weeks interval) i.m. 1×109 PFU hDPP4-Tg mice nAb↑
Viral Load ↓ Pathology ↓

[72]

AdC68-S 1 dose i.n. 2×109 vp hDPP4-KI mice nAb↑
Cellular Immunity ↑
Viral Load ↓ Pathology ↓

[73]

Measles Virus S 2 doses (4 weeks interval) i.p. 1×105 TCID50 Ad5-hDPP4 mice nAb↑
Cellular Immunity ↑
Viral Load ↓ Pathology ↓

[74,75]

VEEV Replicon Particle S 2 doses (4 weeks interval) foot-
pad

1×105 IU Ad5-hDPP4 mice
hDPP4-Tg mice

Viral Load ↓ [76,77]

VSV-ΔG S 1 dose i.n./i.m. 2 × 107 FFU NHPs
(also in mice)

nAb↑
Cellular Immunity ↑

[78]

RABV S1 3 doses (1-2 weeks interval) i.m. 10 µg inactivated virus Ad5-hDPP4 mice nAb ↑
Viral Load ↓

[79]

Viral vector +
nanoparticle

Ad5-S + Nanoparticle(S) 1×Ad5-S
2×nanoparticle (2-3 weeks
interval)

i.m. 1×109 IU
5 µg S + Alum

BALB/c mice nAb↑
Cellular Immunity ↑
Pathology ↓

[80]

DNA

S (consensus sequence) 3 doses (3 weeks interval) i.m. 0.5-2 mg NHPs (also in mice and
camels)

nAb↑
Cellular Immunity ↑
Viral Load ↓ Pathology ↓

[81]

S1 (1-725) 3 doses (3 weeks interval) i.m. 0.1 mg Ad5-hDPP4 mice nAb↑
Cellular Immunity ↑
Viral Load ↓

[82]

DNA + protein S DNA + S1 Protein 2×DNA
1×Protein Boost (4 weeks interval)

i.m. 1 mg DNA
100 μg Protein

NHPs (also in mice) nAb ↑
Pathology ↓

[49]

Protein Subunit

RBD-Fc (377-588) MF59 3 doses (3 weeks interval) s.c. 1–10 μg Ad5-hDPP4 mice nAb↑
Cellular Immunity ↑
Viral Load ↓

[83–
86]

Alum 2 doses (4 weeks interval) s.c. 5 μg hDPP4-Tg mice nAb ↑
Pathology ↓

[87]

RBD trimer (377-
588)

Alum 2 doses
(4 weeks interval)

i.m. 5 μg hDPP4-Tg mice nAb ↑
Pathology ↓

[88]
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may induce pulmonary perivascular hemorrhage in a
MERS-CoV challenge mouse model, regardless of the
its full protection upon lethal viral infection. They
also showed that the pulmonary pathology can be miti-
gated by incorporating CD40L, an immune-modulator
therefore potential molecular adjuvant, into the recom-
binant adenovirus-based vaccine [72]. Whether this
vaccine-associated pathology is related to residual
infectious viruses or unbalanced immune responses
awaits further investigation. With this in mind, all
future MERS-CoV vaccine candidate designs should
take extra cautions on safety evaluation.

Furthermore, recombinant-protein-based vaccines
are widely pursued. Strategies to solubilize the
MERS-CoV S glycoprotein in order to form stable
immunogens include forming nanoparticles and
using soluble protein truncations. In particular, both
nanoparticles formed with full length MERS-CoV S
glycoprotein [93,94] and subunit RBD-based vaccines
[83–90] have been shown to induce virus neutralizing
antibodies and to protect mice when challenged with
MERS-CoV. One RBD subunit vaccine also conferred
protection in rhesus macaques [91]. This indicates
that RBD alone as antigen may be sufficient for protec-
tive immunity to develop against the virus. Along with
the finding that mAb targeting NTD is able to neutral-
ize MERS-CoV, Lan et al showed that three doses of
intramuscularly administered recombinant NTD
protein also induced protective immunity against live
MERS-CoV in human DPP4 transduced mouse
model (Ad5-hDPP4 mice) [92]. More recently, with
the structural insights into the spike glycoprotein, Pal-
lesen et al developed a prefusion-stabilized S trimer
vaccine by substituting proline residues into the S2
domain [33]. The introduction of proline disfavours
the refolding of the linker between HR1 and the central
helix, thus preventing the transition of spike into the
post-fusion state. This rationally designed antigen,
MERS S-2P, was shown to induce broader and more
potent neutralizing activity than wild type spike trimer
protein [33].

Finally, a prime-boost strategy based on a full-length S
glycoproteinDNAvaccine followedbyanS1-glycoprotein
boost was able to induce virus-neutralizing antibodies and
confer protection against the clinical severity of diseases in
non-human primate models [49]. Compared with the
protein-only regimen, the combination of DNA and
protein induced a more functionally diverse antibody
repertoire and stronger Th1 immune response. It was
suggested that the native S glycoprotein conformation,
formed on the cell surface after DNA vaccination, helped
induce more diverse antibodies against MERS-CoV.

As summarized in Table 2, most of the aforemen-
tioned strategies require multiple immunizations
which may pose additional logistic hurdles at the end
point use. It is unclear whether these immunization
strategies were empirically designed or due to relatively
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poor immunogenicity of candidate vaccines. For prac-
tical and compliant purposes, a single immunization
with the highest immunogenicity in animals and
humans will be preferred.

6. Conclusion

The outbreak of MERS-CoV in Saudi Arabia in 2012
reminded us of the 2003 SARS-CoV outbreak in
China. Despite the differences in geographic location,
epidemiology and immediate animal reservoirs, these
two viruses share remarkable similarity in causing severe
respiratory syndrome, leading to high fatality in humans
and trigger serious public health concerns. With the
advent of modern techniques in virology, immunology
and vaccinology, we have gained substantial insights
into the biology of MERS-CoV, and its pathogenesis
with unprecedented speed and accuracy. As summar-
ized in the current review, tremendous progress has
been made in understanding (1) the entry process of
MERS-CoV into target cells, (2) the structure and func-
tion of S glycoprotein and cellular receptor DPP4 in
mediating viral entry, (3) antibody response during
natural infection and isolation of broad and potent neu-
tralizing mAbs, and (4) design and development of vac-
cine candidates using various innovative technologies.
However, our progress in translating these discoveries
into clinical application has been slow. Only two vaccine
candidates and one mAb panel have entered phase I
clinical trials for safety. Ironically, no vaccines and treat-
ment strategies have been approved for SARS-CoV
infection even after more than a decade of outbreak.
We could not imagine how catastrophic it would be
should SARS-CoV hit again or MERS-CoV continues
to probe and gain strong capacity in transmission to
and among humans.

We are facing a difficult predicament when it
comes to public health challenges in the new era of
emerging and re-emerging infectious diseases. On
one hand, the human population is becoming ever
mobile and exposed to an increasing number of
pathogens. On the other hand, translating basic dis-
coveries into preventative and treatment applications
has been exceedingly slow. Among many plausible
reasons, a lack of incentives in financial returns per-
haps stands the tallest. The deadlock is not just hap-
pening to MERS-CoV and SARS-CoV but also to
many other infectious pathogens such as Ebola, Mar-
burg, Lassa, highly pathogenic avian influenza, HIV-1,
and so on. Fundamental and drastic changes have to
be made in the entire research and development sys-
tem before we can truly prepare and position our-
selves ahead of deadly epidemic and pandemic. Only
then, can our speed and accuracy in basic discovery
be timely translated into clinical and public health
needs. The time to act is now.
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