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Middle East respiratory syndrome coronavirus-encoded ORF8b 
strongly antagonizes IFN-β promoter activation: its implication for 
vaccine design

Middle East respiratory syndrome coronavirus (MERS-CoV) 
is a causative agent of severe-to-fatal pneumonia especially 
in patients with pre-existing conditions, such as smoking and 
chronic obstructive pulmonary disease (COPD). MERS-CoV 
transmission continues to be reported in the Saudi Arabian 
Peninsula since its discovery in 2012. However, it has rarely 
been epidemic outside the area except one large outbreak 
in South Korea in May 2015. The genome of the epidemic 
MERS-CoV isolated from a Korean patient revealed its ho-
mology to previously reported strains. MERS-CoV encodes 
5 accessory proteins and generally, they do not participate 
in the genome transcription and replication but rather are in-
volved in viral evasion of the host innate immune responses. 
Here we report that ORF8b, an accessory protein of MERS- 
CoV, strongly inhibits both MDA5- and RIG-I-mediated ac-
tivation of interferon beta promoter activity while down- 
stream signaling molecules were left largely unaffected. Of 
note, MDA5 protein levels were significantly down-regulated 
by ORF8b and co-expression of ORF4a and ORF4b. These 
novel findings will facilitate elucidation of mechanisms of 
virus-encoded evasion strategies, thus helping design ra-
tionale antiviral countermeasures against deadly MERS-CoV 
infection.
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Introduction

Middle East respiratory syndrome coronavirus (MERS-CoV), 
along with severe acute respiratory syndrome coronavirus 
(SARS-CoV), belongs to the genus Betacoronavirus in the 
family Coronaviridae of the order Nidovirales (Chan et al., 
2015). Among four genera in the subfamily orthocorona-
virinae, only alphacoronaviruses and betacoronaviruses in-
fect mammals, including bats, camels, and humans (Zhou 

et al., 2018). The first coronavirus isolate was reported in the 
mid-1960s from the respiratory tracks of patients with com-
mon cold (Tyrrell and Bynoe, 1965; Hamre and Procknow, 
1966), which was subsequently termed human coronavirus 
229E (HCoV 229E) and human coronavirus OC43 (HCoV 
OC43). Four more human coronaviruses have been isolated 
and described so far: HCoV NL63 (van der Hoek et al., 2004; 
Abdul-Rasool and Fielding, 2010), HCoV HKU1 (Woo et 
al., 2005a; Lau et al., 2006; Vabret et al., 2006), SARS-CoV 
(Ksiazek et al., 2003; Rota et al., 2003), and MERS-CoV (Cor-
man et al., 2012; Zaki et al., 2012). HCoV 229E and OC43 
mostly infect the upper, but rarely the lower, respiratory 
tracks, thus causing mild, but seldom severe, respiratory dis-
eases, such as common cold (Bradburne et al., 1967; Woo 
et al., 2005a). On the other hand, HCoV NL63 and HKU1 
have been shown to infect not only the upper but also the 
lower respiratory tracks, thus causing symptoms ranging 
from mild croup to severe bronchiolitis (Woo et al., 2005b; 
Abdul-Rasool and Fielding, 2010), of which infections are 
mostly self-limiting with just few mortality cases reported. 
The landscape has been widely changing with the emergence 
of two deadly coronaviruses in humans: SARS-CoV and 
MERS-CoV. The two newly identified coronaviruses causes 
severe-to-fatal infection in humans, especially in the presence 
of preexisting conditions with MERS-CoV cases (Alraddadi 
et al., 2016; Meyerholz et al., 2016; Nam et al., 2017; Seys et 
al., 2018). During the SARS-CoV outbreak in 2003, over 8,000 
SARS cases were reported in 37 countries resulting in 775 
deaths with mortality rate reaching 10% (WHO). Since 2004, 
no SARS cases have been reported in the human population 
(Yip et al., 2009; Abdul-Rasool and Fielding, 2010). On the 
contrary, MERS-CoV is a lingering threat causing sporadic 
outbreaks since its identification and characterization in 
2012. Due to its zoonotic nature of infections from drome-
dary camels and low-level medical management, MERS-CoV 
cases are mostly reported in the Arabian Peninsula (van 
den Brand et al., 2015; Widagdo et al., 2019) with one ex-
ceptional outbreak in South Korea in 2015 (Ki, 2015; Lim, 
2015; Kim et al., 2017).
  The outbreak of MERS-CoV in South Korea is generally 
considered as a failure of crisis management (Chowell et al., 
2015; Fung et al., 2015; Ki, 2015). 28 secondary MERS-CoV 
infections in a single hospital arose by transmission from a 
68-year-old business man (Park et al., 2015) who had re-
turned from the Arabian Peninsula, complaining symp-
toms similar to those of MERS-CoV infection. MERS-CoV 
transmission spread to sixteen clinics and hospitals and the 
chain of transmission via intra- and inter-hospital route 
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Table 1. Primers for cloning of MERS-CoV accessary proteins
Name Sequence (5 3 )

MERS-ORF3-F GGCGAATTCAATGAGAGTTCAAAGACCACC
MERS-ORF3-R GGCGGATCCTTAATTAACTGAGTAACCAACG
MERS-ORF4a-F GGCGAATTCAATGGATTACGTGTCTCTGCT
MERS-ORF4a-R GGCGGATCCTTAGTTGGAGAATGACTCCT
MERS-ORF4b-F GGCGAATTCAATGGAGGAATCCCTGAT
MERS-ORF4b-R GGCGGATCCTTAAAATCCTGGATGATGTA
MERS-ORF5-F GGCTCTAGAATGGCTTTCTCGGCGT
MERS-ORF5-R GGCGGATCCTCACACAATCAGGCTGCTAGG
MERS-ORF8b-F GGCGAATTCAATGCCAATTCCACCCCTG
MERS-ORF8b-R GCCTCTAGATTACGCTAGAGGCTCTTGAAG

Table 2. Primers for cloning of immune genes
Name Sequence (5 3 )

MDA5-F AGGTGGGTCGGGTGGCGGCGGATCCTCGAATGGGTATTCCACAG 
MDA5-R GGGTTTAAACTCTAGACTCGAGCTAATCCTCATCACTAAATAAACAG
RIG-I-F GGGTGGCGGCGGATCCTGCAGGACCACCGAGCAGCGACGC
RIG-I-R GGGTTTAAACTCTAGACTCGAGTCATTTGGACATTTCTGCTGGATCAAATGGTATC
MAVS-F GGGTGGCGGCGGATCCTGCAGGCCGTTTGCTGAAGACAAGACCTATAAG
MAVS-R GGGTTTAAACTCTAGACTCGAGCTAGTGCAGACGCCGCCG
TBK1-F AGGTGGGTCGGGTGGCGGCGGATCCCAGAGCACTTCTAATCATC 
TBK1-R AGCGGGTTTAAACTCTAGACTCGAGCTAAAGACAGTCAACGTTG
IKKε-F CGCGGATCCCAGAGCACAGCCAATTACC
IKKε-R CTAGTCTAGATTAGACATCAGGAGGTGCTGGGACTCTAT
IRF3-F TTGGCGCGCCGGAACCCCAAAGCCACGGAT 
IRF3-R CCGCTCGAGTCAGCTCTCCCCAGGGCCCTGGAAAT

lasted for two months (Oh, 2016), resulting in 186 confirmed 
cases of MERS-CoV infections with 38 deaths as well as a 
huge economic loss (estimated, 8.5 billion US). The MERS- 
CoV genome from the second patient was extracted and fully 
sequenced (KT029139.1) (Kim et al., 2015). Characterization 
and analysis of the genome revealed that it has 99.5% to 
99.8% similarity to 53 known MERS-CoVs. Like other MERS- 
CoVs, the genome of Korean isolate encodes 16 non-struc-
tural proteins and 4 canonical structural proteins (S, E, N, 
and M) (Kindler et al., 2016). As characterized in other co-
ronaviruses, MRES-CoV expresses a unique set of subgeno-
mic RNA’s that are translated into accessory proteins, which 
vary in number and function among conronaviruses (Fehr 
and Perlman, 2015). MERS-CoV encodes 5 accessory pro-
teins (3, 4a, 4b, 5, and 8b) while SARS-CoV has 8 of them 
(3a, 3b, 6, 7a, 7b, 8a, 8b, and 9b), suggesting that accessory 
proteins vary in number as well as function. Indeed, some 
accessory proteins have been shown to target a number of host 
cellular processes, especially those involved in innate im-
munity: 1) ORF4a is shown to antagonize type I interferon 
(IFN) responses by employing a few different strategies, bloc-
king melanoma differentiation-associated protein 5 (MDA5) 
(Niemeyer et al., 2013), interacting with protein activator of 
the interferon-induced protein kinase (PACT) (Siu et al., 
2014), or inhibiting IFN-β as well as interferon-stimulated re-
sponse element (ISRE), promoter activity (Yang et al., 2013). 
2) ORF4b interacts in the cytoplasm as well as in the nucleus 
with TANK binding kinase 1 (TBK1) and IκB kinase epsi-
lon (IKKε), disrupting optimal activation type I IFN signal-
ing (Matthews et al., 2014; Yang et al., 2015). 3) ORF5 may 

also interferes with IFN signaling by blocking nuclear local-
ization of interferon regulatory factor 3 (IRF3), the major 
transcription factor for the activation of IFN-β promoter.
  As viruses have been shown to evolve diverse tactics to evade 
host IFN responses, it is likely that in addition to antago-
nistic viral proteins described above, MERS-CoV-encoded 
proteins may encode other mechanisms to counteract IFN-β 
promoter induction upon infection in the host cell. With an 
aim to identify novel virus-encoded antagonist(s), we system-
atically screen MERS-CoV-encoded accessory proteins against 
each individual signaling molecule involved in the type I IFN 
induction pathway: MDA5, retinoic acid-inducible gene I 
(RIG-I), mitochondrial antiviral-signaling protein (MAVS), 
TBK-1, IKKε, and IRF3.

Materials and Methods

Cells
HEK293T cells (ATCC) were purchased from the American 
Type Culture Collection (ATCC) and maintained in a high- 
glucose (4,500 mg/L D-glucose) Dulbecco’s Modified Eagle’s 
Medium (DMEM) (Welgene) including 10% fetal bovine 
serum (FBS) (Welgene) and 1% penicillin/streptomycin 
(Thermo Fisher Scientific) at 37°C, 5% CO2 incubator in a 
humidifying condition.

Antibodies
A mouse monoclonal anti-FLAG antibody (1:5,000) was 
purchased from Millipore Sigma. HA-Tag mouse antibody 
(1:1,000), GAPDH Rabbit monoclonal antibody (HRP Con-
jugate) (1:2,000), Anti-mouse IgG, HRP-linked Antibody 
(1:4,000) was obtained from Cell Signaling.

Reagents
Polyethylenimine (PEI) were purchased from Millipore Sigma. 
Luciferase Assay System and Beta-Glo Assay System were pro-
cured from Promega. 4X Laemmli Sample Buffer and 2-Mer-
catoethanol were purchased from Bio-Rad. Amersham ECL 
Prime Western Blotting Detection Reagent, Amersham ECL 
Western Blotting Detection Reagent, and Amersham Protran 
0.45 NC blotting membrane were purchased from GE Heal-
thcare Life Sciences. The restriction enzymes such as EcoRI- 
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(A) (B) Fig. 1. ORF8b strongly inhibits both MDA5- 
and RIG-I-mediated induction of IFN-β pro-
moter activity. MERS-CoV accessory genes were
co-transfected into HEK293T cells with MDA5
(A) or RIG-I (B) together with IFN-β-luc and 
β-gal expression construct. Firefly luciferase ac-
tivities and Western blots are shown at the top 
and bottom panels, respectively. Band intensities
were determined by the ImageJ software and 
adjusted by that of GAPDH, which were nor-
malized to the band intensity of MDA5 alone 
control. The arrow heads indicate each MERS- 
CoV accessary protein with 3XFLAG at the N 
terminus. # long exposure for ORF5. Data rep-
resent the Mean ± SD. *P < 0.05.

HF, BamHI-HF, NotI-HF, NheI-HF, PmeI, PmlI, XhoI, XbaI, 
and T4 DNA ligase were purchased from New England Bio-
labs (NEB). Opti-MEM and MAX Efficiency DH5α Compe-
tent Cells were obtained from Thermo Fisher Scientific. Pfu 
Plus DNA Polymerase was purchased from Elpisbio. Com-
plete Mini Protease Inhibitor Cocktail was procured from 
Millipore Sigma.

Plasmid construction
Multiple cloning site (MCS) of an expression vector, pcDNA-
3.1-Hygro(+) (Lee et al., 2018), was modified with a linker 
DNA to generate an HA-tagged Neo-JY4 vector: 5 -GCTA 
GCGCCACCATGTACCCATACGACGTCCCAGACTAC
GCTAAGCTTTCTGGTGGCGGTGGCTCGGGCGGAG
GTGGGTCGGGTGGCGGCGGATCCTGCAGGCGCGC
CAGCGCTATCGATATCGATGGCGCCTGGCCAGACC
ATCAGTCGAGTGGCGCCACTGGACTAATGGTCCGT
ACGCTCGACTGTACAGGCCGGCCTCAGGTTAACAC
CGGTACCTCAGCCCGGGCGGCCGCATGCGGGCCC
CTCGAGTCTAGAGTTTAAAC-3 . The modified vector, 
named pcDNA3.1-Hygro-JY4-HAN-GS3 harboring a HA 
tag and a spacer (3xGGGGS) at the N-terminus of MCS, 
was used to clone immune genes (see text) by employing se-
quence and ligation independent cloning (SLIC) (Jeong et 
al., 2012; Islam et al., 2017). MDA5, RIG-I, MAVS, IKKε, 
TBK1, and IRF3 were amplified by PCR using Q5 Hot Start 
High-Fidelity DNA Polymerase (NEB): 98°C for 10 sec, 58°C 
for 30 sec, 72°C for 30 sec/kb for 30 cycles. Purified PCR 
products were cloned into the pcDNA3.1-Hygro-JY4-HAN- 
GS3 vector. All primers for the immune genes are listed in 
Table 2. Pfu Plus DNA Polymerase (Elpisbio) was utilized to 

PCR-amplify each MERS accessory gene: 95°C for 20 sec, 
58°C for 20 sec, 72°C for 10 sec/kb for 30 cycles. MERS acces-
sary genes were cloned in p3xFLAG-CMV10 vector (Milli-
pore Sigma) by conventional ligation method using restric-
tion enzymes. The sequence of MERS-CoV isolated from a 
Korean patient was used to construct expression plasmids, 
which was authorized by Korea Centers for Disease Control 
(Approval No. 16-RDM-019).

Transfection and luciferase reporter assay
HEK293T cells (4 × 105 cells/well) were seeded in a 6-well 
plate a day before transfection as previously described (Kang 
et al., 2018; Kim and Myoung, 2018; Park et al., 2019). Briefly, 
mixtures, containing 500 ng of Interferon (IFN)-β-luc, 100 ng 
of β-gal expressing plasmid as the internal control, 500 ng 
of immune gene stimulating plasmid and 1,000 ng of MERS 
accessary gene encoding or empty plasmid, were transfected 
using PEI transfection reagent as ratio of 1:2 (DNA: PEI) in 
200 μl of opti-MEM (Thermo Fisher Scientific). At 24 h 
post-transfection, the transfected cells were lysed using 1 × 
Reporter Assay Lysis Buffer of the Luciferase Assay System 
(Promega) with 1 × Protease Inhibitor (Millipore Sigma). 
Lysates were incubated on ice for 10 min and centrifuged at 
150,000 rpm, 4°C for 15 min. The supernatant was transferred 
to a new tube. 25 μl of sample was mixed with 25 μl of Assay 
Substrate in the Luciferase Assay System and Beta-Glo Assay 
System (Promega), and the luciferase or β-gal intensities were 
measured on GloMax 96 Microplate Luminometer (Pro-
mega). Firefly luciferase activity was normalized by β-gal ac-
tivity, and fold induction of luciferase gene, in the presence 
or absence of MERS-CoV accessary protein, was calculated.
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(A) (B) Fig. 2. MAVS- and TBK-1-induced activation 
of IFN-β signaling were not perturbed by ac-
cessory proteins of MERS-CoV. MERS-CoV 
accessory genes were co-transfected into HEK-
293T cells with MAVS (A) or TBK1 (B) toge-
ther with IFN-β-luc and β-gal expression cons-
truct. Firefly luciferase activities and Western 
blots are shown at the top and bottom panels, 
respectively. The arrow heads indicate each 
MERS-CoV accessary protein with 3XFLAG at
the N terminus. Data represent the Mean ± SD.
*P < 0.05.

Western blotting
Protein amount was quantified by Pierce BCA Protein Assay 
Kit (Thermo Fisher Scientific) as described before (Cho and 
Myoung, 2015; Ha et al., 2016; Kang et al., 2016). In brief, 
15 μg of protein was loaded and separated on a SDS-PAGE 
gel and subsequently transferred to a NC blotting membrane 
(GE Healthcare Life Sciences). Primary antibodies were in-
cubated at 4°C overnight while secondary antibodies for 1 
h at RT. For statistical analysis, paired two-tailed Student’s 
t-test was performed. Difference between means was con-
sidered significant when P-value was < 0.05.

Results

ORF8b strongly antagonizes IFN-β promoter activation in-
duced by both MDA5 and RIG-I
The MERS-CoV genome encodes 5 accessory proteins. Al-
though some studies have been conducted (Niemeyer et al., 
2013; Siu et al., 2014), detailed mechanisms of how MERS- 
CoV-encoded accessory proteins interrupt type I IFN in-
duction remain still elusive. A full panel of MERS-CoV ac-
cessory genes were cloned into an expression vector (for 
details, see ‘Materials and Methods’). ORF8b was included 
in this study although it has been neglected in the previous 
screening (Niemeyer et al., 2013; Siu et al., 2014). Accessory 
proteins were expressed more or less comparably with albeit 
lower expression in ORF3 and ORF5. Codon optimization 
of ORF5 and lysate preparation with sonication did not im-
prove soluble levels of those two proteins. MERS-CoV ORF’s 
were expressed either individually or in combination (ORF4 
and ORF4b) to investigate if those two proteins function in 
the same pathways or they interact synergistically. To ex-

amine whether MERS-CoV accessory proteins inhibit RIG- 
I-like receptors (RLR)-mediated activation of IFN signaling, 
HEK293T cells were transfected with either MDA5 (Fig. 1, 
left panel) or RIG-I (Fig. 1, right panel) together with a panel 
of accessory genes. As expected, ORF4a inhibited MDA5- 
mediated (Niemeyer et al., 2013), but not RIG-I-mediated 
(Niemeyer et al., 2013; Siu et al., 2014), induction of IFN-β 
promoter activity. Of note, ORF4b induced marginal, but 
statistically significant, downregulation of both MDA5- and 
RIG-I-mediated activation of IFN-β signaling. In addition, 
ORF4b cooperated with ORF4a in the inhibition of MDA5- 
mediated IFN signaling induction in an additive manner 
(Fig. 1A). A surprise comes with ORF8b. ORF8b suppressed 
over 80% the activation of IFN signaling induced by both 
MDA5 and RIG-I (Fig. 1A and B). Furthermore, expression 
of ORF8b or co-expression of ORF4a and ORF4b led to sig-
nificant reduction in protein levels of MDA5, but not RIG-I, 
suggesting for a differential mechanism(s) involved in MERS- 
CoV protein-mediated inhibition of those two cellular heli-
cases. Taken together, 3 MERS-encoded proteins (ORF4a, 
ORF4b, and ORF8b) efficiently block IFN induction via bloc-
kade of the RLR’s.

MAVS- and TBK1-induced activation of IFN-β promoter 
is not perturbed by MERS-CoV accessory proteins
Next, it was tested if MERS-CoV accessory proteins are also 
involved in the inhibition of downstream innate immune 
molecules, namely MAVS and TBK-1 (Fig. 2). As shown, none 
of MERS-CoV accessory proteins perturb, if any, MAVS- 
(Fig. 2A) and TBK-1-mediated (Fig. 2B) induction of IFN-β 
promoter activity. Thus, it appears that the two cellular RNA 
helicases (MDA5 and RIG-I) are a major target of the ac-
cessory protein.
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(A) (B) Fig. 3. IKKε- and IRF3-induced activation of 
IFN-b signaling were not perturbed by acces-
sory proteins of MERS-CoV. MERS-CoV ac-
cessory genes were co-transfected into HEK-
293T cells with IKKε (A) or IRF3 (B) together 
with IFN-β-luc and β-gal expression construct.
Firefly luciferase activities and Western blots 
are shown at the top and bottom panels, respec-
tively. The arrow heads indicate each MERS- 
CoV accessary protein with 3XFLAG at the N 
terminus. Data represent the Mean ± SD. *P < 
0.05.

Fig. 4. IFN-β signaling pathway and its modulation by accessory proteins 
encoded by MERS-CoV. Activation of the cellular helicases (MDA5 and 
RIG-I), by the ligation with cognate ligands, leads to induction of IFN-β 
promoter activity via a cascade of signal amplification: aggregation of 
MAVS on the outer membrane, activation of kinases (TBK1 and IKKε), 
and phosphorylation and translocation of dimerized IRF3. In this study, 
we demonstrated that ORF8b strongly inhibits both MDA5- and RIG-I- 
induced activation of IFN-β signaling. ORF4a-mediated inhibition seems 
to be limited to that of MDA-5.

IKKε- and IRF3-mediated activation of IFN-β signaling was 
left little changed by MERS-CoV-encoded accessory proteins
IRF3, a down-stream signaling molecule of IKKε, is a key 
transcription factor in the induction of IFN-β (Grandvaux 
et al., 2002; Honda et al., 2006; Honda and Taniguchi, 2006; 
Liu et al., 2015). To examine whether MERS-CoV accessory 
proteins regulate IKKε or IRF3-mediated upregulation of 
IFN-β, HEK293T cells were co-transfected with IKKε or full- 
length IRF3 (Fig. 3A) together with individual accessory gene. 
A marginal, but significant reduction in IFN-β promoter 
activation, induced by IKKε, was detected by ORF5 (Fig. 3A, 
upper panel) while the protein level of IKKε was not changed 
(Fig. 3A, lower panel). On the other hand, IFN-β promoter 
activation, induced by IRF3, was largely unchanged by ac-
cessory proteins of MERS-CoV.

Discussion

Type I IFN responses are a first line of defense against inva-
ding viruses (Kang and Myoung, 2017a, 2017b; Kang et al., 
2018; Kim and Myoung, 2018; Banerjee et al., 2019). There 
are 16 different type I IFN’s that are known to be expressed 
in humans (Kindler et al., 2016): IFN-α (13 subtypes), IFN-β, 
IFN-κ, and IFN-ω (1 type each). Upon viral infection, liga-
tion of viral pathogen-associated molecular patterns (PAMP) 
with cellular pattern recognition receptors (PRR) initiate a 
series of activational cascades in cells (Fig. 4). For example, 
double-stranded RNA (dsRNA) molecules, a byproduct of 
viral replication and transcription in a cell (Weber et al., 2006; 
Zielecki et al., 2013), are generally recognized by the RNA 
helicases (MDA5 and RIG-I), and/or protein kinase R (PKR) 
in the cytoplasm as well as by toll-like receptor 3 (TLR3) in 
the endosome. It is now well-known that structurally and 
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chemically distinctive RNA’s are recognized by the two cel-
lular helicases (Akira et al., 2006; Medzhitov, 2007): RIG-I 
senses long or short dsRNA molecules with di- or tri-phos-
phates at the 5 end (Goubau et al., 2014) while single-stranded 
RNAs (ssRNAs) with particular features can also be recog-
nized if the ssRNAs are 3 phosphorylated or polyU/UC- 
rich (Malathi et al., 2007). On the other hand, types of RNA 
that MDA5 binds to include long RNA’s with higher-order 
structures (Runge et al., 2014) as well as some ssRNA’s (nega-
tive-sense RNA and hypomethylated 5 capped mRNA mol-
ecules) (Luthra et al., 2011; Zust et al., 2011). Upon recogni-
tion of these RNA’s, RIG-I and MDA5 undergo conforma-
tional changes, including oligomerization, and the mitochon-
drial membrane chaperone 14-3-3ε recruits the oligomers 
to mitochondria, where caspase activation and recruitment 
domains (CARD) of the RNA helicases interact with MAVS 
(Kawai et al., 2005; Meylan et al., 2005; Seth et al., 2005), lead-
ing to induction of its aggregation and activation. Activated 
MAVS, in turn, triggers activation of TBK-1 and IKKε (Fitz-
gerald et al., 2003; Hacker and Karin, 2006; Gatot et al., 2007; 
Chau et al., 2008; Clement et al., 2008), and subsequently 
phosphorylation and dimerization of IRF3 (Grandvaux et 
al., 2002; Honda and Taniguchi, 2006; Liu et al., 2015). Di-
merized IRF3 translocates into the nucleus, stimulating tran-
scription of IFN-β (Fig. 4).
  MERS-CoV, like SARS-CoV, is generally considered to have 
evolved from bat coronaviruses (Li et al., 2005; Hayman, 
2016; Goldstein and Weiss, 2017; Maxmen, 2017). Compre-
hensive genomic and functional analyses of those two vi-
ruses have revealed a few interesting distinctions between 
them (Kindler et al., 2016): 1) SARS-CoV encodes more num-
ber of accessory proteins at the 3 end of the genome com-
pared to MERS-CoV, 2) More number of SARS-CoV-encoded 
genes are known to inhibit IFN signaling than those of 
MERS-CoV, 3) MERS-CoV is more sensitive to IFN-medi-
ated inhibition than SARS-CoV (Zielecki et al., 2013). These 
results suggest that MERS-CoV might have evolved less 
means to evade the innate immune responses mediated by 
IFN. However, exact magnitude or multitude of MERS-CoV- 
encoded antagonistic mechanisms remain to be elucidated.
  To shed light on viral and cellular determinants of IFN eva-
sion by MERS-CoV, a full panel of accessory genes of MERS- 
CoV (van Boheemen et al., 2012) were cloned into an ex-
pression vector: ORF3, ORF4a, ORF4b, ORF5, and ORF8b. 
Either in combination or individually, these genes were trans-
fected into HEK293T cells together with each molecule that 
is involved in an IFN signaling: MDA5 and RIG-I (RNA 
helicases), MAVS, TBK-1, and IKKε (cytoplasmic signaling 
molecules), or IRF3 (a key transcription factor). The strik-
ing finding of current study is that ORF8b was identified as 
a strong antagonist of two dsRNA sensors (Fig. 1): MDA5 
and RIG-I with or without perturbation of protein levels in 
the cells, respectively (Fig. 1A vs B). Currently, ORF8b-in-
teracting host proteins are being sought. Identity of host 
interacting partner(s) will hint on the molecular mecha-
nism(s) of ORF8b-mediated suppression. In addition, ORF4a 
seems to robustly down-regulate MDA5-mediated activation 
of IFN signaling. This is in line with a previously published 
study led by Niemeyer et al. (2013). ORF4a has a dsRNA- 
binding motif (Niemeyer et al., 2013; Siu et al., 2014; Comar 

et al., 2019), thus antagonizing IFN signaling like several 
virus-encoded proteins, such as influenza A virus NS1 (Chan 
et al., 2018), herpes simplex virus 1 Us11 (Kew et al., 2013), 
paramyxovirus V (Motz et al., 2013), and Ebola virus VP35 
proteins (Cardenas et al., 2006; Prins et al., 2009, 2010). How-
ever, IFN-inhibiting function of ORF4a may be controver-
sial. Siu et al. (2014) reported that ORF4a could not inhibit 
MDA5-mediated initiation of IFN signaling activation, but 
did suppress an upstream signaling molecule, PACT. PACT 
binds to dsRNA and recruit it to MDA5 or RIG-I. The au-
thors claimed that ORF4a interrupt dsRNA-PACT inter-
action with the RLR’s (Kok et al., 2011; Ho et al., 2016; Lui 
et al., 2017). Furthermore, when a recombinant MERS-CoV 
with ORF4a deletion infects cells, IFN induction was only 
marginally reduced (Comar et al., 2019). One may envision 
that after all ORF4a may play a minor role in viral antago-
nism of IFN signaling and other viral antagonist(s) may 
exist. In this regard, identification of ORF8b as a virus-en-
coded antagonist will help elucidate magnitude and multi-
tude of virus-encoded mechanisms of IFN evasion. Or sim-
ply, viral dsRNA might not be exposed to antiviral sensors 
(PACT, MDA5 or RIG-I) (Versteeg et al., 2007; Zhou and 
Perlman, 2007) as MERS-CoV induces massive membrane 
re-organization for the formation of double-membrane vesi-
cles for viral transcription and replication (Gosert et al., 2002; 
Lundin et al., 2014). Elucidation of exact mechanisms, in-
volved in ORF4a antagonism of IFN signaling, awaits fur-
ther scrutiny.
  ORF4b seems to marginally inhibit both MDA5- and RIG- 
I-induced IFN signaling (Fig. 1) and also to cooperate with 
ORF4a to further down-regulate MDA5-mediated signaling 
(Fig. 1A). To our knowledge, this is the first evidence that 
ORF4a and ORF4b inhibits IFN signaling in an additive 
manner. As ORF4b harbors nuclear localizing signal (NLS) 
(Niemeyer et al., 2013; Comar et al., 2019), it is tempting to 
postulate that it may interact with one or more of transcrip-
tion factors that are involved in IFN induction.
  Taken all together, here we report that ORF8b of MERS- 
CoV is a potent antagonist of both MDA5- and RIG-medi-
ated activation of IFN signaling (schematic summary in Fig. 
4), building up ever-growing list of MERS-CoV evasion stra-
tegies against the host innate immune responses. Delinea-
tion of molecular mechanisms ORF8b will likely pave way 
to develop effective protective and/or therapeutic antiviral 
measures.
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