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Abstract

We present here several variants of a mathematical model to explore three main issues
related to SARS-CoV-2 spread in scenarios similar to those present in Mexico and elsewhere
in Latin America. We explore the consequences for travel inside a given region, in this
case Mexico, particularly focusing on airplane transportation but attempting to give a
gross approximation to terrestrial movement since this is the main form of population
movement across geographical areas in the country; then we proceed to study the effect of
behavioral changes required to lower transmission by lowering the contact rate and infection
probability and lastly, we explore the consequences of disease spread in a population subject
to social isolation.These models are not suitable for predictive purposes although some
rough predictions can be extracted from them. They are presented as a tool that can
serve to explore plausible scenarios of spread and impact, effectiveness and consequences
of contention and mitigation policies. Given the early stage at which the epidemic is at
the date of writing in Mexico, we hope these ideas can be helpful for the understanding of
the importance of isolation, social distancing and screening of the general population.
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Key findings

• We have estimated the parameters of the epidemic curve (growth rate, carrying
capacity and dispersion) as well as a first estimate of the basic reproduction number
for Mexico.

• We provide expected trends of epidemic outbreaks depending upon of the number
of imported cases per day arriving to a large airport. We illustrate this trends with
data from Mexico City airport.

• We provide expected trends of disease dispersal depending upon of the number of
exported cases per day either by airplane or bus. We illustrate this trends with data
from Mexico City.

• We evaluate the effect of behavioral change to reduce the contact rate and compare
diverse scenarios that evaluate the timing of initial enforcement of behavior, time
horizon in which to diminish the contact rate and the proportion of people under
isolation.

• We evaluate the effect of social isolation by itself with respect to two main parameters:
the starting time for the enforcement of control measures, and the learning time to
achieve the desired contact rate reduction. We stress the importance of quick and
direct actions to isolate and reduce contact rate simultaneously.

1 Introduction

At the end of December of 2019 a novel coronavirus SARS-CoV-2, was detected in adults
with pneumonia from the city of Wuhan, Hubei Province, China. This new virus rapidly
spread from Hubei Province to all China [1–5]. By January 22th the virus was detected in
South Korea, Taiwan, Thailand. Macao and USA. By March 12 of 2020, 128,343 cases of
new virus have been detected in 116 countries and 63% of the cases has been register in
Continental China. In February 26, Brazil was the first country of Latin America to detect
this virus and Mexico detect his first case one day later [6]. CoVID-19 is a respiratory
disease caused by the SARS-CoV-2 virus, that has been widely studied in these recents
weeks and we defer its description to the appropriate sources e.g. [4, 5]. The disease has
been extensively modeled as a SEIR type of epidemic. In this work we use the SEIR model
framework adapting it to the particular set of problems addressed here. In each section,
dependent on the model variant used, we introduce the new parameters if any and refer to
the appropriate section in the Appendix for the specific model equations. The rate ω or
the related time 1/ω is the mean time of application of non-pharmaceutical interventions
(NPI). All the recommendations that are being advised to prevent infection affect behavior
(washing hands, keeping cough/sneeze etiquette, avoiding handshakes, keeping distance
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from other people) and, therefore, have a learning curve and can be forgotten or relaxed or
incompletely adopted in any given population; also q is the proportion of the population
that is effectively put under isolation. For example, in Wuhan, about 60% of the population
was put under isolation. The total population normally living in that region is of about
14 million but the population at risk was obviously larger comprising much of the Hubei
region.

The incubation and infectious periods have been a most important issue in the present
epidemic and estimates have varied as more information is available on the dynamics of the
disease. We will use incubation period 1/γ = 6 days [3, 7–9]. The same situation occurs
with the infectious period that we take 1/η = 10 days [7, 10, 11]. One of the first articles
to calculate the basic reproduction number R0 of the new coronavirus in Wuhan China,
estimated (Jan 24, 2020) its value as 2.68(2.47− 2.86) with an epidemic doubling time of
6.4 days (5.8 − 7.1) [3]. Other authors have estimated the basic reproductive number to
be around 2.5, value that we use here for the Wuhan original outbreak but again there
exist some variability and uncertainity in the different estimates [9–14]. In what follows
some simple models are described related to three specific situations described above and
occurring during this epidemic: disease dispersion due to long range population movement,
behavioral change imposed on individuals as an strategy of containment, and the effect of
social distancing on the general fate of the epidemic.

2 Intial growth: where Mexico stands

We analyze the cumulative trajectory of COVID19 cases in Mexico in order to create
short-term real-time forecasts of the outbreak. The data consists of daily cumulative cases
from February 28, 2020 to March 26, 2020. The data was obtained daily at 19:00 p.m.
(GMT-6) from the Secretariat of Health press conferences.
To create the forecasts, we use Richards model which considers that cumulative cases C(t)
are given by

C ′(t) = rC(t)

[
1−

(
C(t)

K

)a]
, (1)

where r represents the growth rate of infection, K is the carrying capacity (or final epidemic
size, and a is a scaling parameter. This model is an extension of the simple logistic growth
model that has been recently used to predict cumulative COVID19 cases in China [15].
Parameters a, r and K must be estimated in order to properly describe the observed
data and to provide accurate forecasts. We use an statistical approach through Bayesian
inference. Details regarding the estimation procedure and the the results can be found
on Appendix A. The growth rate r is close to 0.2 and it can range from 1.9 to 2.1
with a probability of 95%. However, the total size of the outbreak K is more difficult to
estimate which is expected since Mexico is at the start of the outbreak and the current data
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Figure 1: Cumulative COVID19 cases in Mexico from February 28, 2020 to March 26, 2020.
Black dots show the observed cases. Pink diamonds are the two most recent observations
that were not used to fit the model in order to test the short term accuracy of the model.
The red solid line shows the mean trajectory of the outbreak estimated from the data,
and red dashed lines are 95% probability intervals. The blue solid lines represent the mean
posterior predictive trajectory of the epidemic and the blue dashed lines are 95% predictive
probability intervals.

shows that the contagion is accelerating. We estimate the final size of the outbreak to be
710,392 cases, ranging from 65,163 up to 1,258,296 with a probability of 95% provided no
cotrol/contaiment/mitigation measures are applied. These are very long-term predictions
and that is why there is too much variability in the interval. To estimate the parameters
we used data up to March 24, 2020. The last two available observations corresponding to
March 25 and 26 can be seen in Figure 1, and are closely predicted by the fitted model.
Furthermore, we create 14 days predictions from March 25, 2020 to April 7, 2020 which can
also be seen in Figure 1. For example, at March 31, 2020, the model expects 1,103 cases,
with a 95% probability interval of (401, 2353); and at April 7, 2020, a total of 4,202 cases
are expected with a 95% probability interval of (1,440, 11,012). Table 1 shows the median
posterior estimates for each parameter and 95% probability intervals. Figure 2 shows the
marginal posterior distributions estimates for each parameter.

Finaly, using the same data we estimated the basic reproduction number for the whole
country. We use the package written in R, Estimation of R0 and Real-Time Reproduction
Number from Epidemics (https://CRAN.R-project.org/package=R0) using the exponential

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.28.20046276doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.28.20046276
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lower bound Median Upper bound

a 0.12 0.59 0.95
r 0.19 0.20 0.29
K 9.6 x 104 6.4 x 105 1.2 x 106

α 0.07 0.15 0.29

Table 1: Posterior estimates for each parameter and 95% probability intervals. Only data
from February 28,2020 to March 24, 2020 was used to produce these estimates, the last
two available observations were removed.
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Figure 2: Posterior distributions for the scaling factor, carrying capacity, growth rate and
dispersion of predicted cases
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and maximum likelihood methods. We obtained using the exponential growth method
R0 = 2.7 (2.5, 3.2); and using the maximum likelihood R0 = 2.3 (2.0, 2.6). Given that for
the Richards curve, the growth rate for Mexico is r = 0.2 below of that of the Wuhan
epidemic, see Table 1, we use the estimate from the maximum likelihood method that
renders R0 = 2.3 with an uncertainity interval of (2.0, 2.6).

In what follows we use several mathematical models to explore the consequences of
interventions on the spread of the disease, i.e., how interventions modify the worrisome
picture depicted in Figure 1.

3 Dispersion by air and road transportation

The Mexico City airport is one of the main connections hubs of Latin America and the
country, and therefore arrival of COVID19 cases has occurred. In this section, we use data
on the daily number of domestic and international travelers that arrive/leave to/from the
Mexico City airport [16]. Below we follow the ideas presented first in [3].
We construct an standard SEIR Kermack-McKendrick mathematical model (see Appendix
B) where s, e, ya, ys and r represent susceptible, exposed, asymptomatic infectious,
symptomatic infectious, and recovered (immune) individuals. N is the total population.
The force on infection is (βaya +βsys)/N . We consider that symptomatic individuals have
restricted movement since either they are too sick to travel or are immediately detected by
the health services at the airport or elsewhere. This consequently decreases their overall
contact rate βs compared to that of an asymptomatic individual βa. Therefore βs < βa
throughout this section. Following [3] we define two rates related to the inbound number of
international air passengers to Mexico City (Lim), and the inbound number of national of
both airplane and terrestrial passengers to Mexico City (Lsm). The basic model is shown
in Appendix B

As the main objective in this section is to study the consequences of disease importation
to a large Latin American city, we assume first that a proportion of the international air
passengers arrive as disease carriers. We define ρt to be the proportion of international
air passengers at time t who cannot transmit the disease, e.g., if ρt = 0.75 then 25% of
the international air passengers are infectious. Of these carriers, a proportion q̂ arrive
as exposed not yet infectious individuals and 1 − q̂ arrive as asymptomatic infectious
individuals. Lms and Lsm are functions of time describing travelers either arriving to
Mexico City airport of leaving Mexico City airport. These rates are time dependent since we
eventually take into account the increase on the number of national travelers during holiday
periods, specifically Holy Week in Mexico. For the analysis we perform a normalization in
order to work with proportions and not absolute numbers of individuals (see (6), Appendix
C). One of the goals of this manuscript is to study the arrival of COVID19 to Mexico City
and its plausible patterns of propagation. The timeline of our study is half a year. To
estimate the daily average number of national and international inbound/outbound air and
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road travelers, respectively we employ information from the Secretariat of Communications
and Transportation (SCT) [16] and the General Directorate for Tourism Competitiveness
of Mexico City [17]. The timeline is set to include Holy Week, a short holiday which
normally presents an increase of arrival/departure flights to/from Mexico City. On the
other hand, the main transport means of the Mexican population is by far terrestrial by
bus. Unfortunately, we only have data on the number of bus passengers outbound from
Mexico City, reported by the large bus terminals Norte, Sur, Poniente and Oriente. We
will assume that on average the number of bus passengers that arrive to Mexico City is
greater than those that leave.

For our simulations, we employ flight data for February 2020, terrestrial data for
January 2018/2019 and take February 21st as the initial date of the arrival of the first
cases. This estimate is plausible since the first cases in Mexico were reported on February
28th but given that the incubation period is of 6 days they likely arrived to Mexico City on
February 21st or 22nd. We also set the population size of the Greater Metropolitan Area of
Mexico City at 25 210 748 inhabitants. To estimate the inbound/outbound international
travelers migration rates, we take into account all flights that arrive/leave Mexico City [16].
Thus, the daily average number of international arrival and departure air travelers are
Lim = 22, 519 and Lmi = 21, 838, respectively. See Appendix G for the procedure followed
to give this estimates. To estimate the inbound/outbound national travelers migration
rates we integrate air and terrestrial transportation. For national flights we arbitrarily
select the thirteen more important destinations from Mexico City, i.e., those who have more
passengers inbound leaving from Mexico City. On the other hand, to estimate the number
of terrestrial passengers, we use data from the above mentioned four main bus terminals of
Mexico City. Therefore, we calculate the averages per day of national passengers in both
kinds of transport (airplane and bus). Thus Lsm = 141, 664 and Lms = 141, 425 except
during the Holy Week (for more details see Appendix G). For the 2020 Holy Week (April
4th to April 12th), we proceed to increase previous estimates by 25% which is a rough and
conservative approximation based on data from the Secretariat of Tourism [17]. Therefore
Lsm = 177, 080 and Lms = 176, 781 during this period and also the information available
on the main bus terminals of Mexico City (for further details see Appendix G). Finally, the
incubation and the infectious period are set to γ = 1/6 and η = 1/10 per day, respectively.
Also, since we do not have data on the air passenger percentage that arrives in the latent
or asymptomatic stage, we propose as a plausible value q̂ = 0.5 as a null hypothesis from
which to start our analysis.

3.1 Case importation of asymptomatics

For our first case, we assume ρt = 0.999956 that is Mexico City airport received only
one imported case per day (IPD). Figure 3 shows that the higher the proportion of
asymptomatic infected arriving two things happen: the outbreak occurs earlier and also
the peak of the outbreak is higher. In Table 2, we further illustrate this case. Notice that
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the changes in prevalence at different dates when proportions of asymptomatic infected
is increased. For this model we explicitly calculated the basic reproductive number since
it depends on ρ the proportion of asymptomatic infectious individuals, and explore the
consequences of taking ρ = 0.30, 0.60 and 0.90, or, equivalently, R0 = 2.0585, 2.1160 and
2.1719, respectively. These values are within the range reported by several authors and
our own uncertainity interval (Section 1) [1, 10,18].

Figure 3: Prevalence for one IPD. Blue, red and black lines represent a 30%, 60% and 90%
of asymptomatics, respectively. The upper left-hand panel shows the initial growth of the
epidemic for each case. Horizontal axis is time in days and the vertical axis is proportions.

3.2 Varying number of imported cases

In our second case, we explore the effect of we explore the effect of decreasing ρt which
is equivalent to increasing the number of IPD. Figure 4 shows that for a higher number
of IPD generates an earlier outbreak but the maximum of the outbreak does not change.
In Table 3, we further illustrate this case for Mexico City. Once again we observe that
prevalence changes when increasing the number of IPD. This case is set by assuming that
80% (ρ = 0.8) of the infected people are asymptomatic giving R0 = 2.1534.

We remark that if we simulate both cases in (Figures 3-4) for a longer period of time,
we can detect the existence of another epidemic outbreak as has already been noted [19].
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Figure 4: Prevalence for one (blue line), two (red line) and three (black line) IPD. The
upper left-hand panel shows the initial growth of the epidemic for each case. Horizontal
axis is time in days, vertical axis are proportions.

3.3 Exportation from Mexico City

Figure 5 shows the expected number of exported cumulative cases (until April 1st) to
several of the Mexican cities that normally receive the highest outbound air or road travel
volumes. Here, as ρ = 0.8, R0 = 2.1534. Figure 5(a) shows the expected number of
exported cumulative cases that use air travel. When considering one IPD, we see that
few states receive at least one exported case from Mexico City (Cancun, Guadalajara and
Monterrey). On the other hand, with three IPD, these states import 4, 3 and 3 cases from
Mexico City, respectively. Figure 5(b) shows the exported cumulative cases for terrestrial
transportation. Here, if the imported cases per day (IPD) is one, then Puebla, Jalisco,
Michoacan, Guerrero, and Queretaro import 4, 5, 3, 2 and 1 cases up to Aril 21st from
Mexico City, respectively; while if IPD is equal to three, then Puebla, Jalisco, Michoacan,
Guerrero, and Queretaro import 13, 16, 9, 7 and 4 infections from Mexico City, respectively.

Figure 6 shows the expected number of exported cumulative cases to several Mexican
cities. We simulate the number of cases until April 21st. We can observe the importance of
the number of people who arrive infected since these can significantly increase the spread of
the disease to other states. For example, Figure 6(a) shows that for Cancun, the number of
exported cases can increase by 50 cases if instead of 1 IPD, we have 3 IPD. For Monterrey
the increase, under the same conditions, is approximately 40 cases. Figure 6(b) shows a
greater increase in cases for terrestrial than for air transportation. For example, we expect
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Figure 5: Expected number of cumulative cases exported to Mexican cities with the highest
outbound travel volumes from Mexico City until April 1st. Air (a) and terrestrial (b) travel.
These estimates correspond to one (blue bars), two (green bars) or three (yellow bars) IPD.

that for Jalisco the number of exported cases (by road transportation) can increase in 190
cases if instead of 1 IPD, we have 3 IPD. Similarly for Puebla where the number of exported
cases can be increased in 145 cases approximately if instead 1 IPD, we have 3 IPD.
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Figure 6: Expected number of cumulative cases exported to Mexican cities that have the
highest outbound travel volumes from Mexico City until April 21st. Air (a) and terrestrial
(b) travel. These estimates correspond to one (blue bars), two (green bars) or three (yellow
bars) IPD.

Finally, it is an obvious conclusion from our simulations that it is very important to
control the number of people who arrive infected since these can significantly increase the
spread of the disease to the other states. Note that the results in this section do not include
any control, mitigation of containment strategy. The results shown in Tables 2-3 are some
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possible scenarios in the absence of control interventions.

Date ρ 0.30 0.60 0.90

27/03/2020 1124 1324 1558

29/03/2020 1460 1742 2080

31/03/2020 1894 2292 2773

03/04/2020 2795 3454 4266

Table 2: Mexico City prevalence
(number of cases) for different days
as a function of the percentage
of asymptomatic cases, under the
assumption of one IPD.

Date IPD 1 2 3

27/03/2020 1476 2952 4428

29/03/2020 1961 3921 5882

31/03/2020 2603 5206 7808

03/04/2020 3976 7953 11927

Table 3: Mexico City prevalence
(number of cases) for different days as a
function of IPD (imported cases per day)
under the assumption that 80% of cases
end up as asymptomatic.

4 Behavioral change and epidemic containment

Once the disease arrives into a given region, city, or municipality, containment measures
are at first, limited to behavioral changes called non-pharmaceutical interventions or NPIs,
directed essentially to diminish transmission by reducing contact between people. In order
to model this, we modify system (15) to include a variable contact rate β̂k(t), and omit
migratory phenomena (see Appendix D for the model equations).

Our main results in this section explore the variation of the effective contact rate under
these actions. We define

β̂k(t) =


βk 0 ≤ t < Tθ

βk − (1−q1)
θ βk (t− Tθ) Tθ ≤ t < Tθ + θ

q1βk t ≤ Tθ + θ,

(2)

where k = a or s for asymptomatic or symptomatic individuals, respectively. Note from
the formula above that we assume that behavioral change geared to diminish the contact
rate from βk to q1βk takes a learning time θ to acquire where q1 is the desired proportion
of reduction of the initial contact rate, e.g., q1 = 0.25 if the contact rate is reduced in 75%
at the end of a time interval of length θ. Moreover, these control measures are not taken
immediately after the outbreak is identified but lag a certain time Tθ before being enforced
or (see Figure 7) .

4.1 Diminishing the contact rate

The baseline parameters for the simulations that follow are

βa = 0.48, βs = 0.4, γ = 1/6, η = 1/10, ρ = 0.8,
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where, we remind the reader correspond to the contact rates of asymptomatic and symptomatic
infecteds, the incubation and infectious period and the proportion of asymptomatic cases
respectively.

Figure 7 illustrates the behavior of the contact rates for asymptomatics β̂a(t) and for
symptomatics β̂s(t). For both rates, the efficacy of education on the behavioral change is
the same since we assume that education is not related to symptomatology although there
is some evidence that this might not be the case. A first result is that if the time it takes
to obtain the desired contact rate reduction θ increases then the reduction rate of both
contact rates is slower.
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Figure 7: Time-dependent contact rates for a reduction. (a) General description of the
contact rate parameters: βk original contact rate, q1βk target contact rate, Tθ time delay
for the application of contact rate reduction, θ learning time to reduce contact rate to
target level. (b) Contact rate reduction of 25% percent (q1 = 0.75) when Tθ = 15 for
asymptomatic cases; (c) but same situation for the symptomatic cases. For (b) and (c)
black, red and blue lines indicate times for contact rate reduction of θ = 180, 90 and 30
days, respectively.

Figures 8 and 9 show that if the time it takes to achieve a reduction in contact
rate increases then the number of infectious cases is greater reflecting the slow rate of
behavioral change. Figure 8 a) and b) show the prevalence and cumulative incidence
respectively, for an scenario with a target reduction of contact rate of 25%, the initiation of
the behavioral change is Tθ = 15 days after 10 cases are detected and where 80% of those
are asymptomatic. For comparison, a red dashed line shows the epidemic curves when no
behavioral change is enforced. Here we see that although the reduction of contact rate is
low (25%) (q1 = 0.75), in the long run behavioral change helps to reduce the incidence.
We also note that in addition to the reduction in cases, as the time to achieve the contact
rate reduction increases, the epidemic outbreak starts earlier and is larger.
Figure 9 shows the behavior of the prevalence (a) and cumulative incidence (b) when
the contact rate is reduced by 50% (q1 = 0.5). In this situation the relevance of the
behavioral change to reduce the incidence is rather clear. Notice that if the time necessary
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Figure 8: Epidemic curves for a reduction of 25% of the contact rate, the day to start the
behavioral change is 15 days after 10 infected are detected and 80% of infectious people
are asymptomatic. (a) Prevalence. (b) Cumulative incidence. Red dashed lines illustrate
the epidemic outbreak in the absence of behavioral change. Black, red and blue lines
correspond to times obtain the target contact rate reduction of θ = 180, 90 and 30 days,
respectively. The upper left-hand graph illustrates the initial growth of the epidemic for
each case.

to achieve the contact rate reduction is either θ = 30 or θ = 90 days (differing for more
than two months), the outbreaks are very similar which makes us postulate the existence
of a threshold value θ∗ such that the peak incidence is reduced if θ < θ∗. Larger learning
times do not have an impact on the size of the epidemic.

Figures 10-12 show examples of the behavior of the cumulative incidence (at 180 days
after 10 infected are detected which we use as the indicator of initiation of the outbreak in
this example) as a function of certain parameter values. Figure 10 shows that if Tθ is closer
to the time of detection of the first cases (in this example, when 10 infected people are
detected), then the cumulative incidence can be reduced more efficiently and underlines
the importance of reducing the effective contact rate quickly. In our example even when
the reduction is only of 50%, we see that the final cumulative incidence decreases to low
levels. This observation contrasts with what is shown in Figures 8 and 9. We will discuss
this in more detail later. On the other hand, Figure 10(b) shows that even when the time
it takes to get the contact rate reduction is large (θ = 90 days), we can still recover a large
reduction in the final cumulative incidence provided we have a quick response to enforce
reduced contacts and a large target reduction in the effective contact rate.

Figure 11 shows that when Tθ = 15 days, regardless of the time θ it takes to obtain
the contact rate reduction, the final cumulative incidence is very low for large reductions
in contact rates (q1 small) or high for low reductions in contact rate (q1 large).

To finish this section, we remark that Figure 10(a) and 12 show the importance of
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Figure 9: Epidemic curves for a reduction of 50% in the contact rate. The day of start
of the behavioral change is 15 days after 10 infected are detected and 80% of infectious
individuals are asymptomatic. (a) Prevalence. (b) cumulative incidence. Red dashed lines
depict the behavior of the epidemic outbreak in the absence of behavioral change. Black,
red and blue lines correspond to times to obtain the target contact rate reduction of 180,
90 and 30 days, respectively. The upper left-hand graph illustrates the initial growth of the
epidemic for each case. Horizontal axis is time in days and the vertical axis is proportions.
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Figure 10: (a) Cumulative incidence for varying θ, the learning time to achieve the target
reduction and Tθ, the delay to start behavioral change for a fixed reduction of contact rate
of 50%, and (b) cumulative incidence for varying Tθ, the delay to start behavioral change
and q1 the target proportion of reduction of the contact rate for a fixed time to obtain the
target contact rate of 90 days.

reducing the contact rate for flattening the epidemic curve. On any scenario, a large
reduction of the effective contact rate is necessary (Figure 12(a)). Figures 12(b) shows an
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Figure 11: Cumulative incidence when the date to the initial behavioral change is 15 days
after 10 cases are detected.

example where an insufficient reduction of the contact rate (40%), leads to a very weak
reduction on the final cumulative incidence.
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Figure 12: Cumulative incidence when (a) the reduction of contact rate is 60%, and (b)
40% for varying θ and Tθ.

5 Transmission dynamics under isolation

If the epidemic cannot be contained, social isolation has been implemented in many places
of the world, notably in China where, given the extent and strictness of its enforcement,
it has apparently been successful. We modify our model to incorporate this containment
measure and let s, e, ya, ys and r as usual represent susceptible, exposed, asymptomatic and
symptomatic infectious and recovered (immune) individuals in isolation which occurs when
a proportion q of the general population is put on restricted movement. The population
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not under isolation (i.e., a fraction 1−q of the total) is denoted by the letters cs, ce, cya , cys
and cr for susceptible, exposed, asymptomatic and symptomatic infectious and recovered
(immune) individuals. In this model isolation comprises not only physical isolation, but
also the enforcement of sanitary and preventive measures like frequently washing hands,
use of face masks, avoiding of public gatherings and so forth.

The actual physical isolation depends on many factors, particularly the length of the
incubation period of the virus but many of the preventive measures taken by individuals
and groups of individuals can last much longer. The isolation enforcement has the following
modeling set up. After the first appearance of the virus a SEIR epidemic starts and develops
until time Tθ where quarantine and isolation are enforced and a fraction q of individuals in
the population goes into isolation. We define q to be the efficacy of isolation, e.g., q = 0.9
if 90% of the population is isolated.

We then record the number of people in each of the SEIR compartments at Tθ, and use
these numbers as the initial conditions for the state variables of the same SEIR epidemic
but under isolation starting at Tθ. The subsystem that escaped or that was not put under
isolation we denote by cSEIR.

We also assume that isolation measures are not perfect and individuals escape from
isolation regardless of infection status at an exponential average time of 1/ω and also that
individuals suspend, forget or relax sanitary measures at the rate ω. It is also assumed that
the isolation time is always larger than the total time of duration of disease comprising
the incubation time, 1/γ, and the infectiousness time 1/η. Therefore 1/ω > 1/γ + 1/η.
We further assume that a fraction ρ of the exposed individuals develop the asymptomatic
disease and that 1− ρ become symptomatic. The contact rates before isolation is enforced
are βia and βia for symptomatic and asymptomatic individuals. Following the ideas set in
the previous section we define two time-dependent contact rates for the isolated population
that can be consulted in Appendix D.

The natural mortality and recruitment rates respectively are assumed to be negligible
during the time of the epidemic. With these definitions the model can is shown in Appendix
E. In summary, for t < Tθ the infectious disease is the standard SEIR Kermack-MacKendrick
model. Once t = Tθ is reached, the population is divided into the isolated and non-isolated
sections with contact rates (9) and (13) respectively.

5.1 Calibration with the Wuhan case

To calibrate our model, in this section we characterize the epidemic in Wuhan, China
(epicenter of the first epidemic outbreak) [6]. We introduce an isolation stage and the
consequent reduction in the contact rates.

For Wuhan the basic reproduction number has been estimated to be R0i = 2.51 [1, 3,
8, 10] and the parameter baseline

βia = 0.65, βis = 0.55, γ = 1/6,
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η = 1/10, ρ = 0.80, ω = 0.01, q1 = 0.10, q = 0.99.

Figure 13 shows the contact rates for the isolated environment. For both rates, the
reduction of contact is 90% (q1 = 0.1), the day of initial isolation is January 26th. We can
impose a fast behavioral change because we think that this process lasted a short time (7
days) in Wuhan.
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Figure 13: Behavior of time-dependent contact ratesfor a target reduction of contact rate of
90%. The day of initial isolation is January 26th; the time to achieve the target contact rate
reduction is 7 days. (a) Contact rate for symptomatic and (b) symptomatic individuals.

Figure 14 presents the case when the 99% of population is isolated. Observe that the
peak incidence is approximately 4 935 individuals and it occurs 2 days after isolation began
(January 26th, [20]) Figure 14(b)). Our simulations show that carrying out an isolation
process promotes an earlier decrease in incidence. On the other hand, considering a total
population equal to 14 million [21] the prevalence at the peak of the epidemic in Wuhan is
around 19 000 cases which is a gross underestimate of the true observed value [6]. A better
estimate of the at-risk population in Wuhan would, we believe, improve or estimate.

Figure 15 shows a comparison of the estimated cumulative incidence (blue line) versus
the data reported by the WHO (red cross) for the Hubei province [20]. Our curves
overestimate the data, which may be reasonable due the known under-reporting of cases
and to the fact that initially there are fewer cases making it difficult to detect them.
Nonetheless we see that when the real epidemic curve begins to stabilize, the difference
between both data and model decreases, which can be explained if we accept that, at this
stage, there are many more cases and it is easier to identify them. Also under-reporting
decreases for the same reason. The black point on the model cumulative incidence (blue
curve) indicates the inflection point. The black dots over the red curve mark the range
where the inflection point is located in the data.
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Figure 14: (a) Prevalence and (b) incidence for the isolated population. The day of initial
isolation is January 26th with 99% of the population under isolation; the reduction in
contact rate is 90%.
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Figure 15: Expected cumulative incidence (blue line) versus Johns Hopkins University data
(red cross) for Hubei. Horizontal axis is time in days and the vertical axis is number of
individuals.

5.2 Understanding the epidemic in Mexico City

The mathematical model in this section is a different variant of the one we applied for
Wuhan because Mexico City outbreak started with imported cases. Therefore we retake
the model proposed in Section 1 and combine it with the Wuhan model of the previous
section to incorporate isolation and behavioral change.

In Mexico air travel has been gradually suspended and at the time of writing (end of
March) not all flights have been canceled. This implies that the flow of people from abroad
is low but significative and it is arriving into a population that is not isolated but has
started measures to reduce the contact rate (social distancing). The model is shown in
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Appendix F.
The parameter baseline set is:

βia = 0.48, βis = 0.40, γ = 1/6,

η = 1/10, ω = 0.01, ρ = 0.80, q = 0.80.

In this section R0 = 2.15 consistent with our estimate given in Section 1. Data published
by the Mexican Secretary of Health on confirmed cases in the Mexico City and the State
of Mexico (that comprise the Greater Metropolitan Area of Mexico City) are 45 (March
20th), 59 (March 21st) and 78 (March 22nd); while our model estimates are equal to 540,
625 and 722, respectively. Our estimates are a reasonable approximation since in many
parts of the world the under-reporting generates cases that are approximately a tenth of
the true data. Our model simulates infections whereas data shows only confirmed cases.

Below we explore three scenarios that might occur in a large metropolitan that includes
variation in the reduction of contact rates, variation in the time it takes to get the contact
rate reduction θ and different dates for start de isolation Tθ. As in Section 1, we consider
February 21 as the initial date of infection, Figures 16-18 show the behavior of the outbreak
after and before isolation.

5.3 Short time θ to reduce the contact rate

On March 23rd authorities of Mexico City ordered the closure of cinemas, theaters, and
other public places as a preventive measure. We show in Figure 16 the incidence and
cummulative incidence under reductions in contact rates of 25%, 50% and 75%, and for
θ = 7 days. Our simulations show that for these reductions in contact rates, a reduction
of up to 91% in incidence can be obtained. However, if we take the first 35 weeks after the
arrival of the first imported case, Figure 16(b) shows that depending on the contact rate
reduction, we could reach a similar situation to that of Wuhan with 69 050 total cases,
(q1 = 0.75), or a medium level situation with 10 800 total cases (q1 = 0.50) or a more
manageable situation with 4 351 total cases, (q1 = 0.25).

5.4 Varying θ

Figure 17 shows the scenario for different θ, the time it takes to get the desired contact rate
reduction. In this case isolation also begins on March 23rd and the reduction in contact
rates is 60%. We observe that by increasing the value of this parameter, the peak and
cumulative incidence will be higher. For example, if the time it takes to reduce the contact
rates is θ = 7 days, then the cumulative incidence 16 weeks after the arrival of the first
imported case will be 6 532, while if the time is θ = 15 days, then the incidence rises to
8 909. Finally, if the time it takes to reduce contact rates is 30 days, then the cumulative
incidence rises to 14 980. It is important to note that although the value of the cumulative
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Figure 16: (a) Incidence and (b) cumulative incidence for the isolated population. The time
to obtain the target contact rate reduction is 7 days. Black, red and blue lines correspond
to reductions in contact rate of 25%, 50% and 75%, respectively. Horizontal axis is time
in days and the vertical axis is number of individuals.

incidence increases, it does not happen with the same intensity as in the case shown in
Figure 16.
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Figure 17: (a) Incidence and (b) cumulative incidence for the isolated population. The
reduction of contact rate is 60%. Blue, red and black lines correspond to times to obtain
the target contact rate reduction of 7, 15 and 30 days, respectively. Horizontal axis is time
in days and the vertical axis is number of individuals.
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5.5 Varying the time to start isolation Tθ

In our third case we explore variation in the time to start the isolation. Here the time to
reduce the contact rates is θ = 7 days and the target reduction is 60%. The initial dates
of isolation are: March 23rd (blue line), March 30th (red line) and April 6th (black line).
The objective of this scenario is to asses what would happen if large cities start isolation
and enforce behavioral change several days after this was done in the Mexican capital.
Figure 18(a) shows the increase in incidence as the isolation start date increases. Solid
lines represent the situation before isolation and the dashed lines represent the situation
after the start of isolation. Figure 18(b) shows that if the onset of isolation had occurred one
or two weeks after March 23rd, then by week 16, the cumulative incidence would increase
by 12 058 and 45 118 new cases, respectively. This scenario underlines the importance
of taking contingency measures with due anticipation, otherwise the number of infected
people will notoriously increase.
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Figure 18: (a) Incidence and (b) cumulative incidence for the isolated environment. Here
we consider that the reduction of contact rate reduction is 60%, and the time it takes to
get the contact rate reduction is equal to 7. Blue, red and black lines mean that the dates
for start de isolation are 31, 38 and 45 days after the first arrival of an infected individual
to Mexico City, respectively. Horizontal axis is time in days and the vertical axis is number
of individuals.

6 Conclusions

The control, containment, mitigation and final resolution of the coronavirus epidemic
requires careful consideration of alternative scenarios as pointed out very clearly in [19].
Models like the ones presented here can help decision-makers to have amore comprehensive
understanding of the epidemic and thus a better set of criteria on which to base decisions.
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The models presented here are of the same general type that have been published and
are being written elsewhere for the coronavirus epidemics. The coronavirus epidemic is an
acute respiratory infection highly contagious and with a case fatality rate above of that
for influenza. From the modeling point of view the Kermak-McKendrick formalism is the
basic and general mathematical tool to understand the epidemic at a population level.
The conclusions that we can reach from the study that we have developed in the previous
sections are the following:

• Restricting population mobility has been reported as highly effective for the containment
of the initial COVID-19 outbreak in China [22,23]. We have attempted to describe the
present conditions in Mexico to evaluate the consequences of delaying or advancing
the enforcement of isolation and mobility restrictions putting special emphasis on the
role of asymptomatic cases since these have been identified as probable important
drivers of the disease [13,24]. At the start of the epidemic in Mexico, Figure 3 shows
that the higher the proportion of asymptomatic cases arriving two things happen:
the outbreak occurs earlier and also the peak of the outbreak is higher. The role of
asymptomatic cases has been under study in the literature particularly as their likely
important role in driving the epidemic appears clearer. In our case, their impact is
to generate an earlier outbreak and also a higher maximum incidence.

• Figure 4 underlines the relative insensitivity of the peak incidence on the rate of
importation of cases provided this rate is relatively low (up to 5 cases per day).
Nonetheless, the higher this rate the earlier the outbreak goes into exponential growth
(phase 2 according to WHO criteria). We remark that running the simulations that
(Figures 3- 4) ilustrate for a longer period of time, we can detect the existence of
a second epidemic outbreak. With respect to disease spread at a national level in
Mexico, the importance of controlling the number of people who arrive infected to
the larger airport hubs and bus terminals is of first priority since, not doing it, these
can significantly increase the spread of the disease to the other states.

• Behavioral change is one of the main forms to reduce contact rates [19]. However,
when dealing with behavioral issues we enter into the psychological realm of individuals
and groups of individuals. For our simulations we assume that education or awareness
and rational decisions regarding the behavioral change associated with reducing
contact rates is the same for asymptomatic and symptomatic individuals although
there is some evidence that this might not be the case as one can directly witness.
We assume different proportions of these two types of infected individuals. This is an
open area of exploration that has not been pursued here. In any case, if asymptomatic
individuals or any identifiable portion of the population have more ”reckless behavior”
on average than other individuals infected or not, then the expected incidence will
be higher in any given scenario.
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• The policies of containment and mitigation have to be applied quickly, with no
hesitation. We observe from our simulations that if the time it takes to obtain
the desired contact rate reduction θ increases then the reduction rate of both contact
rates, for asymptomatic and symptomatic individuals, flattens the curve but more
slowly. We also note that in addition to the reduction in cases, as the time to
achieve the contact rate reduction increases, the epidemic outbreak starts earlier and
is larger. In the examples illustrated above, we see that if the time necessary to
achieve the contact rate reduction is either θ = 30 or θ = 90 days (differing for more
than two months), the outbreak sizes are similar which to us indicate the existence
of a threshold value θ∗ such that the cumulative incidence is reduced if θ < θ∗. In
summary large learning times do not have an impact on the size of the epidemic.
Figure 10 shows that if Tθ is closer to the time of detection of the first cases (in
this example, 10 infected people), then the cumulative incidence can be reduced
more efficiently and underlines the importance of reducing the effective contact rate
quickly. Figure 10(b) shows that although the time it takes to get the contact rate
reduction is high (θ = 90 days), we still can obtain a large reduction in the final
cumulative incidence provided we have a quick response to enforce reduced contacts
and a large target reduction in the effective contact rate. Figure 11 shows that when
Tθ = 15 days, regardless of the time θ it takes to obtain the contact rate reduction,
the final cumulative incidence is very low for large reductions in contact rates (q1
small) or high for low reductions in contact rate (q1 large). Figure 10(a) and 12 show
the importance of reducing the contact rate for flattening the epidemic curve. On any
scenario, a large reduction of the effective contact rate is necessary (Figure 12(a)).
Figures 12(b) shows an example where an insufficient reduction of the contact rate
(40%), leads to a very weak reduction on the final cumulative incidence.

• Figure 14 shows the case when 99% of population is isolated. We can see that the
peak incidence occurs 2 days after isolation began (January 26th) indicating that the
isolation process promotes an earlier decrease in incidence. This scenario underlines
the importance of taking contingency measures with due anticipation, otherwise the
number of cases will notoriously increase.

• Figure 18 highlights the importance of beginning isolation early Tθ = 31 (March
23rd). Our model indicates that delaying action by one or two weeks will let the
outbreak grow with a significant increase in cases. Figure 16 shows, however, that
isolation is not enough to lower the size of the outbreak but that a significant
reduction in transmission rate is also needed. Both control measures have to be
applied simultaneously to be efficient in flattening the epidemic curve. We remark
that simulations in both, are for a transmission rate reduction achieved in θ = 7 days.
Figure 17 shows that for longer times, the total number of cases will increase.

All of the latter leaves the message that apart from designing and enforcing control
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measures, the full participation of the society at large in the fight against this disease
is extremely important. It is necessary to reduce the contact rate to a low enough level to
be able to contain it, it is necessary to isolate, trace and test individuals. These actions
require from everybody to be deeply aware of what should and should not be done to stop
the spreading of the disease.

A Parameter estimation

Let Yj , for j = 1, 2, ...n, be the number of observed cumulative cases at time tj , with tj
given in days. We assume that Yj follows a Negative Binomial distribution with mean
value C(tj |a, r,K) and dispersion parameter α. Here, C(tj |a, r,K)1 is the solution of
Richards model presented in (1). Assuming that, given the parameters, the observations
Y1, Y2, . . . , Yn are conditionally independent, then

E[Yj |a, r,K, α] = C(tj |a, r,K) (3)

V ar[Yj |a, r,K, α] = C(tj |a, r,K) + αC(tj |a, r,K)2 (4)

The Negative Binomial distribution allows to control the variability of the data by considering
over-dispersion which is common for epidemiological data. If α = 0, then we return to the
Poisson model which is often used in this context.

Let θ = (a, r,K, α) be the vector of parameters to estimate. The inclusion of the
parameter α, which is related to the variability of the data, not to the Richards model,
is necessary since in practice this variability is unknown. Then, the likelihood function,
which represent how likely is to observe the data under the Negative Binomial assumption
and Richards model if we knew the parameters, is given by

π(y1, . . . , yn|θ) =
n∏
j=1

Γ(yj + τ)

Γ(yj)Γ(τ)

(
τ

τ + C(tj |a, r,K)

)τ ( C(tj |a, r,K)

τ + C(tj |a, r,K)

)yj
. (5)

Consider that parameters a, r, K and α as random variables. Assuming prior independence,
the joint prior distribution for vector θ is

π(θ) = π(a)π(r)π(K)π(α),

where π(a) is the probability density function (pdf) of a Uniform(0,1) distribution, π(r) is
the pdf of a Gamma(shape=2, scale=1), π(K) is the pdf of a Uniform(Kmin, Kmax), and
π(α) is the pdf of a Gamma(shape=2, scale=0.1). To select the prior for parameter r, we
consider that previous estimation of r are close to 0.3 [15], and a Gamma(2,1) represent
a weekly informative prior as it allows for a wide range of values of r. Also, there is no

1We changed the notation with respect to equation 1 to emphasize that the solution of the ODE depends
on the parameters of interest.
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available prior information regarding the final size of the outbreak K. This is a critical
parameter in the model and, in order to avoid bias, we assume a uniform prior over Kmin

and Kmax. To set these last to values, we consider that the minimum number of confirmed
cases is the current number of observed cases Y (tn) times nine, i.e. Kmin = yn ∗ 9. The
reasoning behind this number is that it has been suggested that the observed cases are
under reported by a factor of nine (REF). To set the upper bound for K, we consider
a fraction of the total population Kmax = N ∗ 0.01, where N is the population size of
Mexico. This fraction was determined base on the observations of other countries such as
Italy where the proportion of infected represents one of the worst case scenarios considering
its population size.

Then, the posterior distribution of the parameters of interest is

π(θ|y1, . . . , yn) ∝ π(y1, . . . , yn|θ)π(θ),

and it does not have an analytical form since the likelihood function depends on the
solution of the Richards model, which must be approximated numerically. We analyze
the posterior distribution using an MCMC algorithm that does not require tuning called
t-walks [25]. This algorithm generates samples from the posterior distribution that can
be used to estimate marginal posterior densities, mean, variance, quantiles, etc. We refer
the reader to [26] for more details on MCMC methods and to [27] for an introduction to
Bayesian inference with differential equations. We run the t-walk for 100,000 iterations,
discard the first 25000 and use 1,000 samples to generate estimates of the parameters and
short-term predictions for the next 14 days.

B Case importation model

Equations for the model reviewed in Section 2. See main text for variables and parameter
definitions.

s′ = −
(
βaya + βsys

N

)
s+ ρtLim + Lsm(t)−

(
Lmi
N

+
Lms(t)

N

)
s− µs

e′ =

(
βaya + βsys

N

)
s+ q̂ (1− ρt)Lim − γe−

(
Lmi
N

+
Lms(t)

N

)
e− µe

y′a = ργe+ (1− q̂) (1− ρt)Lim − ηya −
(
Lmi
N

+
Lms(t)

N

)
ya − µya

y′s = (1− ρ)γe− ηys −
(
Lmi
N

+
Lms(t)

N

)
ys − µys

r′ = η(ya + ys)−
(
Lmi
N

+
Lms(t)

N

)
r − µr

(6)
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C National spread model

Equations for the model reviewed in Section 3 that includes transportation. For the analysis
we standarize the model variables to work with proportions. We define the variables:

xs =
s

N
, xe =

e

N
, xya =

ya
N
, xys =

ys
N
, xr =

r

N
.

Thus, system (6) becomes

x′s = − (βsxys + βaxya)xs + ρt
Lim
N

+
Lsm(t)

N
−
(
Lim + Lsm(t)

N

)
xs

x′e = (βsxys + βaxya)xs + q̂(1− ρt)
Lim
N
−
(
Lim + Lsm(t)

N

)
xe − γxe

x′ya = ργxe + (1− q̂)(1− ρt)
Lim
N
− ηxya −

(
Lim + Lsm(t)

N

)
xya

x′ys = (1− ρ)γxe − ηxya −
(
Lim + Lsm(t)

N

)
xys

x′r = η(xya + xys)−
(
Lim + Lsm(t)

N

)
xr

N ′ = Lim + Lsm(t)− Lmi − Lms(t)− µN

(7)

D Preisolation model

This model sets the migration functios Lim = Lmi = Lsm = Lms = 0 and µ = 0. Thus

x′s = − (βs(t)xys + βa(t)xya)xs

x′e = (βs(t)xys + βa(t)xya)xs − γxe
x′ya = ργxe − ηxya
x′ys = (1− ρ)γxe − ηxya
x′r = η(xya + xys)

(8)

with varying contact rates given as:

βk(t) =


βik, 0 ≤ t < Tθ

βik −
(1−q1)
θ βik (t− Tθ) , Tθ ≤ t < Tθ + θ

q1β
i
k, t ≤ Tθ + θ

(9)

with k = a or s for asymptomatic and symptomatic individuals, respectively.
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E Wuhan model

The model for Wuhan, before containment measures are applied is

x′s = − (βisxys + βiaxya)xs

x′e = (βisxys + βiaxya)xs − γxe
x′ya = ργxe − ηxya
x′ys = (1− ρ)γxe − ηxya
x′r = η(xya + xys)

(10)

After isolation is enforced, we have a model for the isolated population

x′s = − (βs(t)xys + βa(t)xya)xs − ωxs
x′e = (βs(t)xys + βa(t)xya)xs − γxe − ωxe
x′ya = ργxe − ηxya − ωxya
x′ys = (1− ρ)γxe − ηxys − ωxys
x′r = η(xya + xys)− ωxr

(11)

and for the non-isolated population:

c′s = −
(
β̃s(t)cys + β̃a(t)cya

)
cs + ωxs

c′e =
(
β̃s(t)cys + β̃a(t)cya

)
cs − γce + ωxe

c′ya = ργce − ηcya + ωxya

c′ys = (1− ρ)γce − ηcys + ωxys

c′r = η(cya + cys) + ωxr

(12)

with contact transmission for the non-isolated part of the population:

β̃k(t) =


βik, 0 ≤ t < Tθ

βik −
(1−q̂1)
θ̂

βik (t− Tθ) , Tθ ≤ t < Tθ + θ̂

q̂1β
i
k, t ≤ Tθ + θ̂

(13)

where k = a or s for asymptomatic or symptomatic individuals, respectively. q̂1 is the
desired proportion of reduction of the initial contact rate, e.g., q̂1 = 0.35 if the contact rate
is reduced in 65% at the end of a time interval of length θ̂.
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F Mexico City model

Dynamics before isolation is given by system 7. After isolation, dynamics for the isolated
population is given by

x′s = − (βs(t)xys + βa(t)xya)xs − ωxs −
(
Lim + Lsm(t)

N

)
xs +

(
Lmi + Lms(t)

N

)
(1−Ni)xs

x′e = (βs(t)xys + βa(t)xya)xs − (γ + ω)xe −
(
Lim + Lsm(t)

N

)
xe +

(
Lmi + Lms(t)

N

)
(1−Ni)xe

x′ya = ργxe − ηxya − ωxya −
(
Lim + Lsm(t)

N

)
xya +

(
Lmi + Lms(t)

N

)
(1−Ni)xya

x′ys = (1− ρ)γxe − ηxys − ωxys −
(
Lim + Lsm(t)

N

)
xys +

(
Lmi + Lms(t)

N

)
(1−Ni)xys

x′r = η(xya + xys)− ωxr −
(
Lim + Lsm(t)

N

)
xr +

(
Lmi + Lms(t)

N

)
(1−Ni)xr

Ni = xs + xe + xya + xys + xr.
(14)

And dynamics for non-isolation is described by:

c′s = −
(
β̃s(t)cys + β̃a(t)cya

)
cs + ρt

Lim
N

+
Lsm(t)

N
−
(
Lim + Lsm(t)

N

)
cs + ωxs

−
(
Lmi + Lms(t)

N

)
Nics

c′e =
(
β̃s(t)cys + β̃a(t)cya

)
cs + q̂(1− ρt)

Lim
N
−
(
Lim + Lsm(t)

N

)
ce − γce + ωxe

−
(
Lmi + Lms(t)

N

)
Nice

c′ya = ργce + (1− q̂)(1− ρt)
Lim
N
− ηcya −

(
Lim + Lsm(t)

N

)
cya + ωxya

−
(
Lmi + Lms(t)

N

)
Nicya

c′ys = (1− ρ)γce − ηcya −
(
Lim + Lsm(t)

N

)
cys + ωxys −

(
Lmi + Lms(t)

N

)
Nicys

c′r = η(cya + cys)−
(
Lim + Lsm(t)

N

)
cr + ωxr −

(
Lmi + Lms(t)

N

)
Nicr

N ′ = Lim + Lsm(t)− (Lmi + Lms(t)) (1−Ni)− µN .

(15)
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G Travel data

To estimate the values of Lim and Lmi, we calculate the average number of passengers
per day arriving/departing from Mexico City from/to abroad taking the total number of
passengers for each mean of transportation and divide it by the corresponding number of
days. We use the data reported by the Ministry of Communications and Transportation
[16].

From CDMX To CDMX

AMSTERDAM 12,429 13,536

ATLANTA 17,593 18,067

AUSTIN 1,681 1,770

BARCELONA, España 4,743 5,280

BOGOTA 33,677 34,006

BUENOS AIRES 11,234 9,617

CARTAGENA DE INDIAS 1,844 2,104

CHARLOTTE 3,023 3,293

CHICAGO 20,633 20,487

DALLAS-FORT WORTH 25,420 28,138

DENVER 7,370 7,140

DETROIT 3,370 3,233

TOKYO 8,406 9,774

MC ALLEN 517 500

MEDELLIN 6,299 6,298

MIAMI 30,757 32,293

MINNEAPOLIS 2,940 2,702

MONTREAL 12,262 12,797

MUNICH 3,422 4,155

NEWARK 7,982 8,229

NUEVA YORK 31,012 31,675

OAKLAND 2,593 2,494

ORLANDO 10,781 10,927

PANAMA 19,301 20,338

PARIS 17,895 18,885

TORONTO 18,772 18,867

From CDMX To CDMX

ESTAMBUL (ARNAVUTKOY) 1,676 2,090

FRANKFURT 8,555 9,530

GUATEMALA 18,343 18,684

GUAYAQUIL 2,876 3,547

HOUSTON 25,892 28,416

LA HABANA 19,320 19,773

LAS VEGAS 14,165 14,224

LIMA 28,768 28,046

LONDRES 8,976 9,164

LOS ANGELES 37,245 39,271

MADRID 28,960 29,831

MANAGUA 1,620 1,710

SEOUL 4,435 4,765

PHOENIX 2,571 2,992

QUITO 6,473 7,113

SALT LAKE CITY 3,939 3,906

SAN ANTONIO 9,426 9,925

SAN FRANCISCO 12,148 12,165

SAN JOSE, COSTA RICA 14,953 14,179

SAN PEDRO SULA 1,654 1,882

SAN SALVADOR 11,471 13,149

SANTIAGO DE CHILE 13,180 11,837

SANTO DOMINGO, REP DOM 2,176 2,258

SAO PAULO 14,805 13,796

SEATTLE 3,454 3,656

VANCOUVER 15,032 15,154

WASHINGTON 2,823 2,879

Table 4: Number of passengers arriving/departing from Mexico City (CDMX) from/to
abroad in February 2020.

From Table 4, the values of total air passengers that arrived and departure from Mexico
City in February 2020 are 653050 and 633312, respectively. Therefore, Lim ≈ 22519 and
Lmi ≈ 21838.

The values of Lsm and Lms outside the Holy Week are estimated similarly to the
previous case from data from the Ministry of Communications and Transportation (MCT)
and the General Directorate for Tourism of Mexico City [16,17].

From Table 5, the average number of passengers per day, outside the Holy Week air
and terrestrial departing from Mexico City are 31, 173 and 110, 253, respectively. Hence
Lms = 141425. Proceeding in similar manner, the value of Lsm is equal to 141664. Finally,
to calculate the Lms and Lsm values during Holy Week, we increased the above values by
25%. We chose this value because when averaging visits to the Official Sites of the Ministry

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.28.20046276doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.28.20046276
http://creativecommons.org/licenses/by-nc-nd/4.0/


From CDMX To CDMX

CANCUN 180,567 186,440

CHIHUAHUA 29,336 28,642

CIUDAD JUAREZ 24,566 23807

GUADALAJARA 145,432 148,335

HERMOSILLO 31,967 30,267

MERIDA 75,483 75,187

MONTERREY 150,961 150,153

OAXACA 30,978 32,398

PUERTO VALLARTA 42,409 44,396

SAN JOS DEL CABO 36,261 35,799

TIJUANA 87,592 81,831

TUXTLA GUTIERREZ 34,948 35,442

VILLAHERMOSA 33,503 34,313

From To∗

North Terminal 1,062,624 1,063,858

East Terminal 863,604 864,621

West Terminal 1,028,215 1,029,324

South Terminal 463,400 464,225

Table 5: The Table on the right indicates the number of air passengers arriving/departing
from Mexico City (CDMX) from/to some Mexican states in February 2020. The Table on
the left shows the number of road passengers in January 2018/2019. ∗ these values are
only rough approximations.

of Tourism during February and March 2019 [17], and comparing it to the data for the
month of Holy Week of the same year, one sees that travel increased by approximately
25% [17]. Therefore, in Holy Week, Lms ≈ 176781 and Lsm = 177080.
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