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Stochastic Compartmental Modelling of SARS-CoV-2 with Approximate Bayesian Computation
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ABSTRACT

In this proof-of-concept study, we model the spread of SARS-CoV-2 in various environments with a
stochastic susceptible-infectious-recovered (SIR) compartmental model. We fit this model to the latest
epidemic data with an approximate Bayesian computation (ABC) technique. Within this SIR-ABC
framework, we extrapolate long-term infection curves for several regions and evaluate their steepness.
We propose several applications and extensions of the SIR-ABC technique.

1. EPIDEMIC MODEL

The SIR model (Kermack & McKendrick 1927) traces
3 trajectories in phase space: susceptible (S), infectious

(I), and recovered members of the population (R). The
transmission rate β represents the number of disease
transmissions per unit time, per infected host. The re-

covery rate γ is simply the number of recoveries per unit
time. The disease lifetime is exponential, with a wait
time scaling as e−γt. The expectation of disease dura-
tion is hence 1

γ . These parameters govern the disease
model with the following differential equations:

N = S + I +R (1)

dS

dt
= −βSI

N
(2)

dI

dt
= β

SI

N
− γI (3)

dR

dt
= γI (4)

We use an implementation of the Gillespie algorithm
(Gillespie 1977) to generate stochastic trajectories of S,
I, and R from these differential equations.

2. APPROXIMATE BAYESIAN COMPUTATION

Armed with the ability to generate stochastic infection
and recovery curves from starting parameters, we turn
to fitting the starting parameters from real-world epi-
demic data. Since the models are stochastic in nature,
there isn’t a simple analytical form that we can mini-
mize. Additionally, rather than fitting for only the pa-
rameters themselves, we would also like to quantify how
certain we are about those parameters. We therefore
employ an approximate Bayesian computation (ABC)

technique to compare our simulations to observations
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Figure 1. An advantage of the SIR-ABC method is the abil-
ity to fully capture the covariate joint distribution between
fitted model parameters.

and recover the posterior distributions of β and γ (Fig-
ure 1). This technique was previously used to fit initial
mass functions to nearby galaxies (Gennaro et al. 2018).

The general goal of ABC is to sample the posterior dis-
tributions of simulation parameters such that the simu-
lations match the observed data. In practice, it is im-
possible for simulations to exactly match data due to

noise and ill-posed models. Additionally, if the observ-
able space is continuous, then the probability of sim-
ulations exactly matching observations is exactly zero.
Therefore, we define some distance d between simula-
tions and observations, as well as a tolerance ε. We
accept those parameters who produce simulations are
d < ε away from the observed data. By initially sam-
pling from the prior distributions of the parameters and
iteratively shrinking the tolerance ε up to some stopping
criterion, we ’shrink’ the prior into the posterior.

The Dong et al. (2020) epidemic data consists of a
2-dimensional time series comprising of the number of
confirmed cases and the number of recovered cases per
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Figure 2. Above: Posterior distributions of our fitted epi-
demic parameters for the Hunan province. Below: Observed
epidemic curves, along with 25 realizations of the best-fit
model.

day (R). We subtract these two quantities to derive the
number of infectious cases per day, I. Given a simulated
epidemic and the observed data, we quantify the differ-
ence between both the infectious and recovered popula-

tion curves to obtain a distance

d =

√
(Rsim −Robs)

2
+ (Isim − Iobs)

2
(5)

Rather than a-priori assuming the initial susceptible

population S, we marginalize over it as a nuisance pa-
rameter in our ABC procedure. Therefore, our ABC
algorithm fits for three parameters: β, γ, and S.

We use the pyabc package in Python (Klinger et al.

2018) for our ABC procedure. We employ a simple par-
ticle filter algorithm (sequential Monte Carlo) that ac-
cepts or rejects sampled particles based on the selec-

tion criterion d < ε, until p particles have been accu-
mulated. The first iteration samples uniform priors on
each parameter, and each subsequent iteration samples
the posterior of the previous iteration. We shrink ε by
setting εi of the ith iteration equal to the median of all
the sampled distances d from the (i− 1)th iteration.

As the parameters converge to their posterior, the
shrinkage of ε slows down, and the sampler has to re-
ject progressively more particles in order to accumulate
p particles with d < ε. We choose a stopping criterion

such that the acceptance ratio (number of total parti-
cles sampled in order to accumulate p valid particles)
is 1%. We find that the models are well-converged at
this point, and sampling further does not improve the
parameter posteriors. The root mean square difference
defined in Eqn. 2 is around d ∼ 10 for the converged
models. Each fit takes ∼ 25 minutes to complete on a

regular laptop computer.
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Figure 3. Extrapolated infection curves for the 10 worst-
affected Chinese provinces. We allow the epidemic solution
to continue until no active infections remain.

3. RESULTS

We fit our model to the 12 provinces in China worst
affected by SARS-CoV-2, with the exception of Hubei
due to the lack of early-stage data there. We recover
posterior densities of β, γ, and the number of suscepti-
ble citizens S (Figure 2). We present epidemic curves

with our model simulations overlaid for all regions in the
appendix.

For most provinces, there is an excellent agreement
between the SIR-ABC model and the total number of

confirmed cases. The fit is less perfect for the individual
infected-recovered curves. This is to be expected, since
the real-world obviously does not truly follow an SIR

model. There are various externalities like spatial effects
and government/healthcare responses. Our simple SIR
model also lacks vital statistics like births and deaths.

For a fatal illness like SARS-CoV-2, it would be valuable
to add these parameters to the model. However, for
the purpose of this proof-of-concept study, we estimate
that adding these parameters will negligibly affect the

goodness-of-fit of the total confirmed cases (Chen & Li
2020).

We extrapolate the model for each region by allow-

ing it to run until no active infections remain (Fig. 3).
We find a consistent extrapolated infection profile for all
the provinces under study. This indicates a similar level
of government response after the first infections were
reported, despite differing population sizes in each re-
gion. We quantify the ’steepness’ of the infection curve
by dividing the maximum number of active infected pa-
tients by the total length of the extrapolated infection
curve, i.e. the duration of the epidemic. We compare
the steepness of different Chinese provinces in Fig. 4.

We find a strong correlation (p < 0.01) between the
steepness of the infection curve and the fitted initial
number of susceptible patients. This is likely not a sig-
nificant finding, but rather an intrinsic collinearity be-
tween these measures.
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Figure 4. Relative ’steepness’ of the extrapolated infection
curves in Fig. 3.

4. DISCUSSION

In this proof-of-concept study, we apply approximate
Bayesian computation to fit stochastic epidemic models
to real world data. We encourage researches to improve

and adapt these methods to other problems.
An interesting extension of our analysis would be char-

acterizing the reproduction rate R0 of different regions.

However, we use a non-standard parameterization of the
SIR model for the benefit of our ABC optimization.
Therefore, our derived R0 = β/γ lacks interpretabil-
ity and cannot be compared to other studies. We invite

other researchers to repeat our analysis with the stan-
dard SIR parameterization.

Additionally, whilst parameter fits are poorly con-
strained in populations where the infection has not al-
ready peaked, it would be interesting to explore epi-
demic forecasting on those datasets. The Gillespie al-
gorithm can be optimized to work faster with larger
numbers of patients. Our parameterization of the SIR
model can also be modified to include vital statistics
like births and deaths. ABC generalizes well to these
higher-dimensional parameter spaces. Specific to SARS-
CoV-2, age-structured models would also be a valuable
development, as would models that include vaccinations
and acquired immunity.
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Figure 5. Observed epidemic curves, along with 25 realizations of our best-fit SIR-ABC model for 4 Chinese provinces.
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Figure 6. Observed epidemic curves, along with 25 realizations of our best-fit SIR-ABC model for 5 more Chinese provinces.
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